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CHAPTER 1

PROBLEMS IN TEST CALIBRATION

Historical Perspectives

It is now one hundred years since Francis Galton pioneered the development of mental

measurement with the publication of his thiquiries into Human Faculty and its

Development' (Galton, 1883). Galton developed what are generally considered to have
been the first mental tests, although it was James Cattell (1890) who introduced the
term 'mental test'. By then the process of measurement had started on its way, the
techniques of measurement and the standards to be employed for describing the
instruments used to measure were emerging (see Suppes, 1976).

Cattell postulated a predictive relationship between his tests and future scholastic
success (Cattell and Farrand, 1896). What was reportedly the first substantial use of the
technique of correlation by Wissler (1901) illustrated no practical relationship between
the scores Cattell obtained and the observed college grades of the students. The next
major development occurred when Binet constructed mental tests to discriminate

between retarded and normal children (Binet and Simon, 1905). The published tests
(Binet and Simon, 1908) were widely used and became the model for later tests developed
in other countries.

The involement of the United States in the First World War in 1917 required the
selection of recruits as efficiently and effectively as possible. As a consequence, the US
Army developed a variety of sub-tests designed to measure various attributes of the
incoming recruits. The educational community observed this application of measurement
and soon there were many tests emulating the content and format of the army tests.
The notions of standardization (meaning the derivation of normative information on
sections of a population) and validation (as measured by correlation with some
independent measure or measures of the same attributes) were first recognized at about
this time. As a result of these developments, it became clear that tests could measure
more than just_ some form of general mental ability; in fact, they began to be applied to
the identification of a wide range of somewhat independent dimensions of ability.

The practice of test development and the formulation of theoretical models of test
performance grew together in the emerging field of educational and psychological
measurement. By the time of the 1940s various models of test performance had been
formulated and since then various parallel streams of development have continued.

The first stream was associated with the now classical model of true score and
error. This model was practical in that it allowed the formulation of a number of useful

relationships. It led to the development of parameters to describe the items comprising

10



the test. Such parameters were the item difficulty, item reliability and item
discrimination, which is now usually measured by the point-biserial correlation between
the item responses and the total score obtained from all the other items on the test.
Parameters describing the test were forthcoming as well. These included reliability as it
is measured in a number of forms, most popularly the Ruder-Richardson formulae (Ruder
and Richardson, 1937), and such indices as the standard error of measurement. In
addition, the classicial true score and error approach has allowed the exposition of
relationships between test length and reliability or precision, such as the well known
Spearman-Brown formula (Spearman, 1910). The classical model did, however, have
certain problems associated with it, often related to the way the descriptive parameters
of the test fluctuated with different samples of people used to estimate such
parameters; that is, the parameters used to describe test and item performance were
sample-dependent.

By now it was clear that test parameters were related to the selection of people,
and also related fairly directly to the selection of items and the parameters of those
selected items. The attention of the test developers and those who proposed models for
describing test performance was directed at items more than ever before.

The second, and more recent, stream in educational and psychological
measurement was initiated by Georg Rasch who formulated a model which focused on a
single latent trait (Rasch, 1960). In this model, the function of a test was conceived to
be the estimation of an individual's ability not in terms of an observable 'how many' from
a domain of tasks, but in terms of 'how much' on a dimension representing the trait to be
measured. This model was obviously suited to tasks that varied with respect to a single
parameter, namely the difficulty of the task, rather than in the type or content of the
task. The amount by which the tasks deviated from the assumed dimension in any way
other than their difficulty has generally been measured using factor analytic methods.

Latent Trait Measurement

From the acceptance and use of the notion of a latent trait on which individuals might be
measured and placed, there came the task of formulating an effective yet relatively
practical model to describe the quantitative parameters of tests, and more specifically,
of the items within the tests. Historically, a number of models has been suggested.
However, they all have tended to take the approach of specifying a probability function
which relates two parameters, the ability of the individual and the difficulty of the item,

- _to the probability of passing the test item, that is, of answering it correctly.

There are in fact three parameters which may easily be demonstrated to differ
between items. These are:

2
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1 the location of the item on the trait, namely, the measure of its difficulty;
2 the rate with which the probability of success increases or decreases as one moves

ug or down the trait in ability, namely, the measure of its discrimination between
candidates who differ only slightly in ability; and

3 the lower asymptote of the probability of success a parameter designed to
measure the success rate of candidates for whom the task is nearly impossible, but
who have a substantial probability of success because of the item's construction
(such as a multiple-choice item), namely, a measure of the probability of guessing
correctly.

There are, currently, two main schools of thought regarding the role of these
parameters. One either assumes that the second parameter is constant for all items and
that the third is zero, or alternatively assumes that although they do not satisfy the
above criteria, the amount by which they violate these two assumptions is not great
enough to give rise to significant effects. The second approach treats all three
parameters within the structure of the model. However, this approach gives rise to
problems associated with the complexity of the model and the numbers of candidates
necessary to estimate accurately the three parameters for every item.

The model under consideration in this monograph is commonly called the 'one
parameter model' because it assumes that the first parameter is the only one which
varies, that the second is constant, and that the third is zero. Thus, each item is
completely described by only the first parameter, which is the item difficulty value.

Various mathematical formulations for this probability model have been

postulated. The two most prominent ones are the normal ogive model and the logistic
ogive model. These two are nearly equivalent; the difference between the shape of a
logistic ogive and a normal ogive being less than one per cent at the most. The logistic
ogive has gained dominance however, because the logistic function is demonstrably
easier to manipulate algebraically, and because of the separability of person and item
measures. It is this more widely used logistic model which is being investigated in this
study.

The simple formulation of the one parameter logistic model is:

exp(x( bk di ))
pr(X = x , )

1 + exp( bk di )

where pr(X = 1 bk , ) is the probability of success for candidate k
on item i ,
&i< is_the estimated ability for candidate k ,

and dl is the estimated difficulty for item i.

It is clear that the parameters describing tests and items depend on the sample of
candidates used for calibration, and that the parameters of items may depend on

3
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characteristics of the other items in the test. Because tests are composed of items the
test parameters are clearly dependent upon the characteristics of the items.

The Basch model eliminates the dependence of item (and therefore test)
parameters upon the calibration sample when all the assumptions of the model are met.
This has not been achieved in practice because these assumptions are not met in real-life
testing situations. A test designed to measure the ability of a person, either in the
latent trait sense, or in a traditional norm-referenced sense is therefore only as good as
the items which it contains. These items must meet a number of criteria. First, the
items must be valid. That is, they must exhibit content validity and should be
representative of the domain of behaviours on tasks they purport to measure. They must
exhibit construct validity, and in so far as is possible, the dimension on which attributes
are measured must be unidimensional. It is hoped that the items will have predictive
validity: they must be able to be used to predict with some accuracy the success of the
candidates, who are tested on tasks drawn from the specified domain. Secondly, the
items must also be reliable. They should measure whatever they do measure
consistently. If an item is inconsistent in the measures of performance it provides then
its usefulness is correspondingly reduced.

Obviously the validity and reliability of a test, and thus also its usefulness, are
related to the validity and reliability of the items which make up the test. In latent trait
measurement the test is only 'as sample-independent as are the items from which the test
is constructed. It is important that items can be demonstrated to possess certain
measurable attributes which do not fluctuate widely under conditions of differing
calibration samples. Nor should they fluctuate according to the presence or absence of
other items in the test. It is the extent of this fluctuation with different samples and
with different item compositions which .is under investigation in this study.

4
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CHAPTER 2

RESEARCH INTO THE ONE-PARAMETER MODEL

The Rasch Mothl Emerges

Gulliksen (1950) remarked that the discovery of item parameters which would remain
stable as the analysis group changed would constitute a significant contribution to item
analysis theory. Rasch (1960) outlined a model which had the theoretical capability to
separate item and person measures, so that the item measures were independent of the
person measures, and therefore independent of the sample, or analysis group. It was with
Wright's paper 'Sample-free Test Calibration and Person Measurement' (Wright, 1967)
that this technique to achieve this stability of item parameters across different analysis
groups became more widely investigated by those in the measurement field.

Wright illustrated this 'technique through a relatively straightforward example of
test calibration using two samples of subjects which had been set tip to be as different as
possible in ability. The resulting test and item parameters were very nearly equal, but
not exactly so. Since Wright's initial application of the Rasch model to this problem in
educational measurement, the question of the degree to which the test and item
parameters approximated invariance across different sample groups has become the issue
of many subsequent studies. If the assumptions Of the model are met, in theory the item
parameters of the test and the person ability parameters are separable, and thus the
item parameters are considered sample-free, and consequently invariant, across

different samples. In this invariance lay the central feature and the promise of the
Rasch model; without it this model would be no more useful than any other model.
However, once it had been established that this invariance was only approximated in
practice, researchers came to speculate on just how stable the item parameters were.
Consequently the model began to be tested for both its robustness across different
samples and the degree to which the model would remain robust as the assumptions it
demanded were violated.

Hambleton (1969) outlined these assumptions underlying the model. In particular,
he showed that the item scaling procedure was insensitive to violation of the assumption
that all items had equal discrimination. Panchepakesan (1969) also illustrated this
robustness of the model when item discrimination values varied significantly.

Whitely and Dawis (1973) subsequently argued that the Rasch model would not
make a significant impact on test development until the technology of latent trait
measurement became more sophisticated. History has shown the correctness of their
prediction. During the decade from Wright's paper in 1967 and the papers of Hambleton
and Panchepakesan in 1969 until the late 1970s little was heard of the Rasch model apart

5
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from isolated research studies. Since then many people have made varying applications
of the model and investigated its properties. Others have improved the technology of its
estimation procedures so that currently the most frequently adopted procedure is the
Unconditional Maximum Likelihood Estimation technique (usually abbreviated to
UCON). This method uses successive adjustments (in an iterative manner) of the item
difficulty and person ability parameters to generate the closest possible fit of the data
to the model. This technique, whilst-accurate, is still cumbersome, requiring substantial
data processing resources. It is possible that other approaches may, in future, yield
equally good parameter estimates with reduced computational requirements.

Sample Size Effects

Forster (1976) investigated the relationship between sample size and the point-biserial
discrimination values and the mean square fit values for items. He determined that as
the sample size increased the fit values also increased. It was also established that the
point-biserial correlation coefficients remained relatively constant, and the average
deviation between the theoretical and the true item characteristic curves increased.
Close inspection of Forster's tables has indicated that these effects relating item
parameters to sample size were not pronounced within the range of sample sizes used
(smallest 98, largest 508). Interestingly, Forster did not draw multiple samples to check
for the stability of item parameters. He relied on only one sample at each sample size
to investigate the trend as sample size was increased.

The conclusions reached by Whitely and Dawis (1973) were similar to those of
Forster, who suggested that in order to estimate parameters it would be necessary to
have a minimum number of three to five students at each score point, whereas Wright
(1967) had contended that accurate estimation was possible even if a number of
sequential score points had no students at all. Forster concluded from this perceived
necessity to have a minimum number of students at each score point that it was also
sufficient and necessary in order to obtain stable item difficulty and student
achievement estimates. Whitely and Dawis (1973) concluded that even with a group size
of 500 or more, some values such as extreme scores could not be estimated accurately.

Haberman (1975) has demonstrated that for a fixed length test the maximum
likelihood estimates of the, item parameters for the one-parameter model converge to
their true value as the sample size tends to infinity. This is, however, an intuitive
proposition as all sample parameters converge to the population values as the sample
size increases and this effect is seen in the finite population correction of the few known
formulae for the sampling variance of many statistics. Conversely, Andersen (1973a,
1973b) showed that when the, number of examinees was increased the maximum
likelihood procedure did not yield stable estimates of the item difficulty parameters.

6



Wright (1977) and Whitely (1977) have strongly debated certain issues of the Rasch
technique. Wright made clear that there is a direct relationship between the standard
error of items and the size of the sample used for calibration. This relationship is
claimed to be of the same type as when estimating the sampling error of the mean,
namely that the sampling variance of the estimated parameter is inversely proportional
to the sample size. This means that the standard error of the item difficulty parameter
is inversely proportional to the square root of the sample size. Wright then gave a table
relating samples of particular sizes to standard error estimates, and suggested that
although sample size does have a relationship to the standard error, that for all practical
purposes the item difficulty parameter may be estimated from samples as low. as 100.
He further stated that sample-invariance depends on a demonstration that the
difficulties of the items remain statistically equivalent over the various kinds of persons
to be measured using those items, and that this condition is investigated when evaluating
the data for fit to the model.

Whitely argued that although difficulty estimation is possible from smaller
samples, the estimation of fit becomes more powerful 'When larger samples are used. She
also pointed out that when differences in item difficulty were being investigated then
larger samples would be necessary.

ForSter (1978) examined the issue of sample size by taking five samples at each of
four sizes (50, 100, 200, and 300) from a population of approximately 1400. Examination
of the correlation between item difficulty estimates based on the samples and the
population values led him to suggest that for sample sizes less than 200 the accuracy
dropped considerably (as measured by this correlation procedure) and that as sample size
increased beyond 200 the increase in accuracy was not substantial. Forster also
calculated the standard deviation of the item difficulty estimates for each sample size
and compared this with the standard deviation of the item difficulty estimates for the
population. This was done in order to compare the equality of the sample difficulty
parameter metric to that for the population. The ratio was very nearly unity for all
sample sizes, although it did exhibit a slight general decrease as the sample size
increased.

Douglass (1980) investigated the stability of the one-parameter (Rasch),

two-parameter and three-parameter models across samples of size 200, 600, 800 and
1082. He concluded that the Rasch model was the most useful in that it gave the most
consistent calibration of items, particularly for smaller sample sizes. Whitely (1980) has
since expressed the opinion, based on a review of earlier studies, that item calibrations
for the Rasch model which are sufficiently precise for research applications can easily
be obtained from samples of 250 or even less.

Cornish (1983) has investigated empirically the stability of item difficulty
estimates for both Rasch and traditional item difficulty parameters. He took 60 samples
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each of 120 students from a population of 2342. No inferences could be drawn about the
effect of sample size as only one size was used. However, he argued that the Rasch
estimates were more stable than the traditional ones because the empirically measured
sampling variance of the Rasch estimates was less than the corresponding empirically
measured sampling variance for the traditional estimates. Whilst his tables support this
conclusion, no account was taken of the different metrics used for the two types of item
difficulty estimate. Cornish also used two sample types (simple random and cluster
samples) and observed that the type of sample did not seem to affect the stability of
the Rasch difficulty estimates.

Item Selection Criteria

Not only has the formulation and size of calibration samples come under investigation
with mixed results, but item selection criteria have also been investigated and debated
at some length. Andersen, Kearney and Everett (1968) investigated the stability of
Rasch item difficulty parameters and found that items which fitted the Rasch model
well had more stable estimates. Tinsley and Dawis (1975) argued likewise that stability
was related to goodness of fit, and went further to suggest that the deletion of poorly
fitting items increased the stability of those remaining, although excessive deletion
caused a subsequent drop in stability. Tinsley and Dawis also investigated the 'z-item
difficulty index' a standardized form of the traditional item difficulty, and found it to
be less stable than the Rasch parameters. Both these research studies used a two-sample
design for measuring stability and employed correlation measures to indicate the level of
stability in a quantitative manner for comparative purposes.

Forster (1976) investigated the relationship between the point-biseriAl

discrimination values and the mean square fit values for items, and suggested th t
differences in point-biserial values between items did not affect item difficulty val es
but did affect item fit values. On a more practical note, Dinero and Haertel (1977) Also
found that the lack of an item discrimination parameter in the simple logistic (RASch)

model did not result in poor calibration in the presence of varying item discriminaltion.
They therefore suggested that with this in mind test constructors should select iteIns of
high discrimination in order to maximize the information available through the use/of the
test. Forster and Karr (1979) have suggested that neither the point-biserial

discrimination value nor the mean square fit value was a satisfactory criterion for the
selection of items or tile ascription of item quality. They suggested that the item
characteristic curve should be consulted in order to select appropriate items for the
Rasch model. Similarly George (1979). investigated the standardized residual mean
square fit statistic and concluded that it did not detect unacceptable variation in item
discrimination. He argued that in order for Rasch model analyses to work in practice the

8
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item discrimination values must be very similar. This was a contrary proposition to
those advanced by the earlier researchers who suggested that discrimination values
which varied significantly would not substantially affect the stability of the
calibrations. However, very few researchers seem to have defined these terms, such as
'similar' or 'varied' in a manner which made clear their meaning in a quantitative
sense. Forster and Ingebo (1978) successively reduced the number of items in a test from
80 to 15 by excluding those items which were at the extremes of the calibration. They
concluded from a correlational procedure that the range of item difficulties in a test
did not affect the item scaling procedure.

The contextual stability of item parameters was investigated by Yen (1979), who
correctly pointed out that the use of the correlation between estimates to indicate
stability was not entirely appropriate. Correlation values simply indicated the strength
of a linear relationship beti.tr'n two variables but did not indicate the degree of equality
of those two variables. Yen argued that since Rasch item difficulty estimates were
nonlinear but monotonic transformations of traditional item difficulty values, then the
rank order was preserved between the two types of statistic. Yen's study illustrated that
contextual effects were greater for item discrimination values than for difficukty
estimates. She also investigated the effect of increasing sample size on difficKly
parameters, but could not easily interpret these effects because of simultaneo\is
contextual differences. She proposed that if predictions about individual items were of
concern to the researcher then it would be wise to use the same context for calibration
and the later use of the item. If the same context was not to be used then very large
calibration samples, of more than 600, should be employed.

Summary

In retrospect it has been found that no investigation has accurately and systematically
quantified the stability of the Resell item difficulty parameters under a variety of
conditions. Such conditions include varying sample size and the deletion of poorly fitting
items in such a way as to alloW comparisons of stability measures between situations of

interest to the researcher. Previous studies have used methods of quantifying stability
which take no account of the metric, such as correlation measures. Many previous
studies have used as few as two samples at each sample size to investigate the effect of
different sample sizes on the stability of item parameters. It seems strange that
investigations into the effects of-sampling on these parameters have assumed that the
effects caused by sampling were sufficiently small between samples of the same size to
enable valid comparisons to be made between samples of different sizes. More
specifically, it seems strange that the studies which investigated the effects of sampling
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on the stability of item calibrations did not seem to take into account the effects of
sampling on the parameters used to measure stability.

Wright (1967) outlined the advantages of perfectly invariant item parameters.
However; subsequent work has shown that these Rasch model item parameters are not
perfectly invariant in practice. The conflicting findings of research into the stability of
these parameters under conditions of different sample sizes and different levels of item
fit have indicated that the question of just how stable these parameters are under a
number of changing conditions has not been fully explored. This study sets out to fill a
few of the more fundamental gaps in our knowledge of this area.
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CHAPTER 3

THE DESIGN OF THE STUDY

Introduction

This chapter describes the data used in this study, the research questitts regarding
parameter estimation for which answers are sought, the relationships between

parameters which require closer examination, the parameters themselves, and the
procedures used to inquire into the issues under investigation.

The Population Data

This study has been made possible through the availability of data on the item responses
on a 55-item test of mathematics achievement for a population of Australian students.
These data were collected as part of a study which examined the contributions of home,
school and peer group environmental factors to changes in the educational achievement
of students in the first year of post-primary education (Year 7) in the Australian Capital
Territory (Reeves, 197). Keeves gathered data on the whole population of first-year
post-primary students in the Territory, and these students were grouped according to the
classes in which they were taught.

In 1969 there were 15 secondary schOols in the Australian Capital Territory; nine

co-educational Government high schools, four Catholic high schools (two for boys and
two for girls), and two Anglican high schools (one for boys and one for girls). The number

of students in the target population which was obtained from census data, and the
number of students in the achieved population for whom Keeves obtained data are
presented in Table 3.1.

The differences between the figures for Reeves' data and those obtained from the
census may be ascribed to absenteeism on the day of 'testing, the movement of
population elements between the census date and the date of testing, and the exclusion
of one small classroom of children because of the atypical nature of this class.

The Sampling Frame

This frame is described in detail in Table 3.'2. Each school has been numbered, and the
classes within schools have been numbered from class 01 to class 7.5 with the numbers of
students within each class also given. Square brackets describe classes which were
paired into 'pseudoclasses' so that later application of cluster sampling would provide
large enough, classes for the specified cluster sizes. The bracketed number at the end of
each school is the number of students in that school.
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Table 3.1 Students Attending Secondary Schools at Form I
Level in the Australian Capital Territory
during 1969

Censusa Keeves

Government schools 1714 1611

Nongovernment schools 764 743

Total 2478 2354

3 From CBCS, 1970a; and CBCS, 1970b.

The Questions Under Investigation

From the previous chapter it is clear that there were many research questions which
could be examined; this study confines itself to some of the more important issues.

First, the relative stability of the Rasch item 'difficulty parameter, the traditional
item difficulty parameter, and the z-item difficulty parameter were investigated under
conditions of differing sample size and design, and the specific relationship between
their stability and the sample size was also examined. Secondly, the effect of different
sample types and sizes on the Rasch item fit estimator for items were investigated. In
this case the fit estimator used was the one recommended by Wright, obtained through
the comparison of multi-group maximum likelihood item response estimates (see Whitely,
1977:230). Thirdly, the effects on the item fit parameter and on the Rasch item
difficulty parameter of removing some of the less appropriate items from the calibration
were examined. Fourthly, the statements by Wright (1977) that the standard error of the
item difficulty parameter is a good estimator of the variance of the item difficulty
parameter and the statement that the standard error of the item difficulty parameter
has an inverse square root relationship to the sample size also came under investigation.

The Prodedures

It is clear that these four questions require that the characteristics of the samples being
taken should vary, and that a sufficient number of samples should be taken to determine
empirically the effects of such sample types and designs upon the parameters in
question. To this end four sample designs were employed: simple random samples,
cluster samples with clusters of size 5, cluster samples with clusters of size 10, and
cluster samples with clusters of size 20. Each cluster was drawn from one classroom,
and classrooms were drawn without replacement. For each of these designs a total of
nine sample sizes were employed (40, 60, 80, 100, 120, 160, 200, 240, 320). In addition to

analyses carried out on the total test of 55 items, the original 55 items were reduced to
42 by eliminating those items which were not truly appropriate to Rasch calibration.
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That is, the items at each extreme of difficulty and those which had poor fit to the item

characteristic curve were deleted. These 42 items, considered appropriate for Rasch
calibration, were subsequently reduced to 32 by the elimination of items with extreme
fit statistics from among the 42. This meant that the effect of deleting poorly fitting
items could also be studied. These analyses were repeated for three test lengths (55, 42
and 32 items) giving a total of 108 systematically different combinations of sample size,
sample design and test length. For each of these 108 combinations 200 random samples
(replications) were drawn, and for each of these 21,600 random samples an estimate of
the Rasch item difficulty, the traditional item difficulty, the z-item difficulty, the
Rasch fit statistics, the standard error of the Rasch item difficulty and the traditional
point biserial discrimination value (unbiased) were calculated for each item.. The Rasch
statistics were generated by the computer program BICAL (Wright and Mead, 1977), The
traditional difficulties were calculated by a small FORTRAN routine written specially
for this study. The further computations and statistics later generated and presented in
tables and graphs were largely generated by the statistical package. SAS (Statistical

Analysis Systems). All the computation was performed on a FACOM M180N system
under TSS.

The Investigations

Investigation 1: The Stability of Item Difficulty Parameters

In his study of the relative stability of different item difficulty parameters Cornish
(1983) made comparisons between the sampling variance of Rasch and traditional item
difficulty parameters. To enhance the interpretation of the Rasch parameters Cornish
transformed the values obtained by multiplication by 4.551 (equal to the reciprocal of
the natural logarithm of 3) and the addition of 50 units. This transformation produced
item difficulty estimates which tended to fall between 0 and 100 and so seemed more
manageable than the original logits which were centred on zero and had numerically
small values. The transformation also produced a neat factor of 3 change to the odds of
success on an item every time the difficulty (or person ability) changed by 5 units.
Cornish also expressed the traditional difficulty values as percentage values. The

problem with such transformations was that any empirically determined variance of an
item difficulty is correspondingly expanded or contracted in accordance with the
transformation which is used. The traditional and Rasch item difficulties were not on
the same metq in the first place in Cornish's study, nor were they after each had been
linearly transf &med. To overcome this problem it was necessary to find some way to
make these variance estimates comparable. A relatively straightforward solution was to
divide the individual item variances obtained (in whatever metric) by the variance of the
actual item difficulty parameters across the test (in the same metric). This procedure
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Table 3.2 The Sampling Frame

SYSTEM 1 SYSTEM 1 (continued)

SCHOOL 01 CLASS 01 37 SCHOOL 08 CLASS 40 34
CLASS 02 36 CLASS 41 36
CLASS 03 39 CLASS 42 35
CLASS 04 38 CLASS 43 37n CLASS 05 28 CLASS 44 27

L CLASS 06 10 (183) CLASS 45 32

CLASS 46 25

CLASS 47 27
SCHOOL 02 CLASS 07 34 CLASS 48 21 (274)

CLASS 08 33

CLASS 09 28

CLASS 10 25 SCHOOL 09 CLASS 49 32
CLASS 11 30 CLASS 50 33
CLASS 12 28 CLASS 51 32
CLASS 13 17 (195) CLASS 52 31

CLASS 53 26 (154)

SCHOOL 03 CLASS 14 32

CLASS 15 31 SYSTEM 2

L
CLASS 16

L CLASS 17
23

15 SCHOOL 10 CLASS 54 38
CLASS 18 29 (130) CLASS 55 40

CLASS 56 35 (113)

SCHOOL 04 CLASS 19 38
CLASS 20 36 SCHOOL 11 CLASS 57 35
CLASS 21 36 CLASS 58 33

L
CLASS 22

L CLASS 23
36

19 (165)
CLASS 59
CLASS 60

34

31 (133)

SCHOOL 05 CLASS 24 40 SCHOOL 12 CLASS 61 38
CLASS 25 35 CLASS 62 37
CLASS 26 35 CLASS 63 38
CLASS 27 30 rCLASS 64 30
CLASS 28 36 (176) CLASS,65 18 (161)

SCHOOL 06 CLASS 29 36 SCHOOL 13 CLASS 66 40
CLASS 30 37 CLASS 67 44
CLASS 31 30 CLASS 68 48 (132)

L
CLASS 32

L CLASS 33
21

9 (133)

SYSTEM 3

SCHOOL 07 CLASS 34 35 SCHOOL 14 CLASS 69 26
CLASS 35 39 CLASS 70 26
CLASS 36 37 CLASS 71 29 ( 81)
CLASS 37 36

r-- CLASS 38 33
L CLASS 39 21 (201) SCHOOL 15 CLASS 72 32

CLASS 73 30
CLASS 74 30
CLASS 75 31 (123)
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eliminated the effect of both transformations and also eliminated the metric used
because the variance of the item difficulty parameters were expanded and contracted in
exactly the same manner as the individual item variances across the samples under the
linear transformation. This process is not unlike transformations used in the analysis of
variance, where the ratio of between groups and within groups variability is examined.
In this study, the between groups variability is measured by the variance of the item
difficulty measures across the test (the means of the difficulty parameter' for each item
across the samples is used for the item difficulty values). The within groups variability
is the variance of the item difficulty parameter across the samples (the mean of the
item variance parameter is taken to represent the within groups variability). If a general
stability estimate is required for all the items that constitute a test, the average of this
within-item between-samples variance may be divided by the between-items variance.
This procedure enabled the sampling variance of each item to be expressed as a fraction
of the total spread of difficulties encompassed by the items which 'made up a test. As
such, it is a measure of the separability of the items within a test as calibrated using the
particular sample. This procedure was applied to the three item difficulty parameters,
the Rasch, traditional and z-item difficulty indices. The effect of different sample
types and sizes on the ratio of variances just described, and the comparative relationship
between the ratios for the three parameters were investigated so that it could be
determined which parameter gave the most stable estimates under varying conditions.

Investigation 2: The Effect of Sample Parameters on Item Fit and Point-biserial
Discrimination

In this investigation the contentions of Forster (1976) were examined. Namely, that as
sample size increased the fit values also increased but the point-biserial discrimination
values r,:mained the same. At the same time the effect of different sample sizes on
both item fit and point-biserial discrimination were investigated, and various
explanations explored. The effects of sample designs on fit and point-biserial
discrimination were also examined.

Investigation 3: The Effect of Deleting Items which do not Fit the Rasch Model on Item
Fit and Item Variance

Analysis of the items produced clear indications that certain items did not fit the Rasch
model, because of extreme facility or difficulty, or because of poor fit values related to
variability in discrimination values between items. Items which discriminated either too
poorly or too well were eliminated. For this purpose the point-biserial discrimination
values were also consulted. Items which were too easy or too difficult were also
eliminated, as were poorly fitting items. This procedure was performed twice, yielding
the two sub-tests, one of 42 items and one of 32 items. The items which were eliminated
and the reasons for doing so are given in Appendix F. The reason for a two-stage
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procedure was that the original 55 items were selected on the basis of traditional
criteria, particularly for high point-biserial discrimination. Thus the first elimination
process produced a test which contained items appropriate to the Rasch model, and the
second eliminated those which were less, appropriate (in terms of fit value) as members
of the larger group of 42 items which fitted Rasch criteria. The effect Of this procedure
on the fit values of the items and on the stability of the item difficulty parameter for
items belonging to the smallest item group were then investigated.

Investigation 4: The Relationship between Rasch Item Variance, Standard Errors and
Sample Parameters

In this part of the study a straightforward comparison between the sampling variance of
the Rasch item difficulty index and the Rasch standard errors of the items enabled the
validity of the standard error, as an estimator of the error associated with an item
difficulty value, to be examined, both for individual items and, in general, across all
items. The notion that there existed a simple inverse relationship between the square of
the standard error (or the sampling variance) and the size of the calibration sample as
Wright (1977) had contended, was able to be investigated.

The Finite Population Correction

It is clear that the estimation of sampling variances for most statistics is in error as the
size o: the sample approaches a significant proportion of the population. In this study
the samples ranged from 2 per cent to 14 per cent of the population, and as such it was
considered necessary to incorporate a finite population correction to the variance
estimates empirically determined from multiple samples. No formulae were available
for this correction for the more complex statistics such as the Rasch item difficulty and
the z-item difficulty indices. As a first-order approximation the standard form of
(N- n)I(N -1), (where N is the population size and n is the sample size), which is
appropriate for the traditional item difficulty statistic, was used. This correction was
applied to the variance estimates of the difficulty parameters, where it was .considered
appropriate.

Summary

The questions asked by these investigations have remained largely unanswered for some
years now. This study aims to provide some steps towards a better understanding of the
problems associated with the measurement of item difficulty, as well as providing partial
answers to some of the uncertainties in our knowledge of this area.
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CHAPTER 4

THE RESULTS OF THE STUDY

In this chapter the results of the four investigations previously outlined in Chapter 3 are
discussed in turn. It becomes clear that they are not independent investigations but
rather, inter-related studies since observations made in any one investigation Are
associated with, and are, necessarily, consistent with observations in the other

investigations.

Investigation 1: The Stability of Item Difficulty Parameters

This investigation covers a number of questions related to the variance of item difficulty
indices. In the first stage of this investigation the mean raw item difficulty sampling
variances are examined. These are plotted for each of the three item difficulty indices
under consideration in Figures 4.1, 4.2 and 4.3, and the actual values are given in
Appendix D. It was essential that some form of common metric should be used i the

comparisons between the three item difficulty indices. Consequently, the mean raw

item difficulty variance across the test length was divided by the variance of the mean
item difficulty values across 200 samples for the test. The ratio produced in this manner
was unitless in the same way as the coefficient of variation is unitless. This ratio is,
specifically:

S -
Mean (of 55 item difficulty sampling variances)

Variance (of 55 item difficulty sampling means)

This procedure, as outlined in Chapter 3, provided a measure of the 'separability' of
the items, hence the use of the symbol 'S' to indicate the ratio just described. It is a
measure of 'separability' because it expresses the mean error surrounding &e estimation
of item difficulty as a fraction of the total spread of item difficulties across a test. The
smaller the value of S, the more clearly the position of each items difficulty value is
discernible from amongst the difficulty values of the other items on the test. The ratio
might well be described as a 'standardized mean item difficulty variance'. These ratio
values are shown plotted for each sample design and test length in Figures 4.4, 4.5 and
4.6. The actual values used in the drawing of these figures are given in Appendix D. The
four sample designs are designated, for convenience, as 'SRS-1' '(Simple Random Sample),

'CLS-5' (Cluster Sample - 5 persons per cluster), 'CLS-10' (Cluster Sample - 10 persons
per cluster), and 'CLS-20' (Cluster Sample - 20 persons per cluster). The designations

indicate both the type of sample simple random or clustered, and the size of the
primary sampling unit - 1, 5, 10 or 20 persons.
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Table 4.1 Design Effect (Deff) Values for the Variance of the Three Item
Difficulty Indices when estimated by the Three. Clustered Sample
Designs**

Test
length

Rasch difficulty index

Sample size
Sampl6
type 40 60 80 100 120 160 200 240 320

55 CLS -5 1.10 1.11 1.06 1.08 1.03 1.02 1.03 0.99* 0.98*
CLS -10 1.22 1.26 1.21 1.19 1.17 1.13 1.17 1.11 1.13
CLS -20 1.58 1.52 1.50 1.44 1.50 1.48 1.46 1.37 1.39

42 CLS-5 1.10 1.14 1.06 1.09 1.05 1.04 1.01 1.00 0.94*
CLS-10 1.23 1.29 1.22 1.24 1.23 1.16 1.16 1.15 1.09
CLS-20 1.65 1.67 1.58 1.55 1.61 1.49 1.47 1.43 1.40

32 CLS-5 1.11 1.15 1.08 1.10 1.06 1.05 1.02 1.01 0.97*
CLS-10 1.24 1.30 1.23 1.29 1.25 1.15 1.18 1.20 1.17
CLS-20 1.66 1.70 1.61 1.57 1.65 1.53 1.50 1.47 1.50

Traditional difficulty index

Sample size

40 60 80 100 120 160 200 240 320

55 CLS-5 1.34 1.44 1.29 1.33 1.20 1.20 1.15 1.04 0.87*
CLS-10 2.02 2.03 1.90 1.78 1.89 1.95 1.89 1.71 1.52
CLS-20 3.47 3.18 3.21 2.88 -3.18 3.08 3.27 3.08 3.21

42 CLS-5 1.38 1.51 1.32 1.38 1.24 1.25 1.09 1.07 0.86*
'CLS-10 2.14 2.17 1.99 1.88 2.02 2.08 1.86 1.83 1.58
CLS-20 3.78 3.48 3.50 3.12 3.50 3.33 3.34 3.37 3.48

32 CLS-5 1.41 1.57 1.35 1.41 1.24 1.25 1.18 1.06 0.85*
CLS-10 2.25 2.30 2.08 1.93 2.09 2.14 2.07 1.88 1.64
CLS-20 3.95 3.70 3.66 3.20 3.67 3.46 3.71 3.48 3.67

z-item difficulty index

Sample size

40 60 80 100 -120 160 200 240 320
55 CLS-5 1.08 1.12 1.08 1.06 1.04 1.04 1.05 1.03 0.96*

CLS-10 1.20 1.27 1.23 1.19 1.22 1.19 1.25 1.20 1.16
CLS-20 1.55 1.55 1.53 1.49 1.56 1.50 1.59 1.55 1.54

42 CLS-5 1.07 1.12 1.07 1.06 1.04 1.03 1.00 1.02 0.93*
CLS-10 1.17 1.27 1.21 1.18 1.21 1.16 1.17 1.15 1.09
CLS-20 1.49 1.54 1.50 1,46 1.52 1.44 1.47 1.45 1.41

32 CLS=5 1.09 1.12 1.10 1.07 1.04 1.04 1.03 1.04 0.97*
CLS-10 1.19 1.26 1.23 1.23 1.25 1.16 1.23 1.21 1.17
CLS-20 1.53 1.59 1.56 1.51 1.57 1.49 1.54 1.51 1.52

See Appendix B for a discussion of these figures.
** See Appendix F for a warning regarding the use of this table to

'correct' variance values.
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The Sample Effects

An examination of the raw item difficulty sampling variance plots (see Figures 4.1 to
4.3) for the three difficulty indices showed a number of interesting sample effects. In

the case of all three difficulty indices there was a systematic reduction in sampling
variance, that is, a trend towards greater stability in the estimates of the indices, as the

sample size increased. In terms of the sample types used, it was clear that simple
random samples produced the most stable estimates of the difficulty indices, followed by
the cluster sample designs of cluster size 5 and 10 in that order. Trailing behind these
and noticeablly inferior as a sample design for accurately estimating item difficulty
-values was the cluster sample design with a cluster size of 20.

In order to consider the relative effectiveness of different sample types it was
useful to apply the notion of a design effect (Deff), defined by Kish,(1965) as: . . the

ratio of the actual variance of a sample to the variance of- a,simple random ...inple of
the same number of elements' (Kish, 1965:258). That is, for a statistic such as the Rasch

item di fficulty: _

V(R)complex
Design Effect (Deff)

V(R)srs

where R is the Rasch item difficulty index,
V(R) complex is the variance of the Rasch item difficulty for a complex,
or non-simple randodl -sample,

and V(R) is the =variance of the Rasch item difficulty for a simple randomsrs
sample.

This value of Deff was also calculated for the traditional and z-item difficulty indices,
designated T and Z respectively The Deff values for the three item difficulty indices
under investigation are given in Table 4.1.

The design effect is a measure of the proportional increase in the variance of a
statistic which has been derived for a sample other than a simple random one. This

proportional increase, (or, in some less frequent cases, decrease) indicates and quantifies
the increase (or decrease) in the error associated with the statistic being measured.
Large design effect values indicate that far more caution is needed in the interpretation
of statistical tests and other comparative techniques. The Rasch model of measurement
is in a sense a comparative technique, as the essential element is the difference

between an difficulty measure and the ability measure for a person. Any increase

in the variance of the item difficulty measure produces a correspondingly larger
uncertainty about this difference, and is therefore associated with a decrease in the
confidence with which the ensuing interpretations (and any implications) are held.
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The size of the Deff values given in Table 4.1 indicate the inferiority of cluster
samples compared to simple random samples for estimating accurately any of the three
item difficulty indices. It is also apparent that larger clusters for a given sample size
lead to greater variance of the item difficulty measures. Thus the stabilities of the item
difficulty measures decrease as cluster sizes increase. The consistent exception to this
statement in this study is for sample size 320, where Deff is less than unity for the
CLS-5 design. This exception is a peculiarity of the sample design and population
structure used in this study and the possible reasons for such an exception are provided in
Appendix C.

Given that many educational surveys in which item and test statistics are examined
have often used intact classes or even intact within-school year level groups as the
cluster size, this finding has implications for the stability, and imputed error, of
whatever parameters might have been estimated in such studies. These findings again
offer strong support for the argument presented by Kish (1957:156\ that in the social
sciences the use of simple random sample formulae on data from complex samples
remains the most frequent source of gross mistakes in the* construction of confidence
intervals and tests of hypotheses.

In the light of the effect of different sample types on the sampling variance of the
Rasch item difficulty index it would seem clear that previous statements which
attempted to suggest an appropriate sample size for stable item difficulty estimation
have failed to take into account the sample types and associated design effects.
Estimates which are 'stable', as defined by some measure, for one sample size may be
more or less stable for other samples of the same size but of different design. The
conclusions based on earlier research, and some of the arguments which ensued, are seen

to have been based on the oversimplified notion that sample size was the only relevant
criterion when determining the attributes of the sample necessary for stable estimates.
It is also clear that stability is a relatively regular function of the sample size and type,
and of the statistic in question. This means" that the level of stability desired may be
obtained through an examination of the relationships presented, and the subsequent
selection of a sample of the best design and size to generate the required level of
stability. This study does indicate that very low sample sizes, such as less than 100,
yield poor estimates in terms of stability, and that for sample sizes beyond 200 the
increase in stability is not necessarily economical in terms of the large number of
additional sample elements (people) required to gain additional stability. This finding is
in general agreement with that of Forster (1978) who, with reference to the Rasch item
difficulty index, concluded that for sample sizes less than 200 the accuracy of the item
difficulty dropped considerably, and that as the sample size increased beyond 200 the
increase in accuracy was not substantial. These statements do, of course; need to be
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. tempered by design effect considerations, for if economy permits, a better design may
improve accuracy more readily than a large increase in the number bf sample elements.

The present study also indicates that simple random samples generate the most
stable estimates, and that for cluster samples small clusters generate more stable
estimates than large clusters for a given sample size. Of particular concern is the
noticeable relative instability for clusters of size 20 (CLS-20 design). As suggested
earlier, it is commonplace for educational surveys to sample from class or year-level
clusters which are considerably larger than 20, and, as such, some concern arises from
the observation that for such samples the traditional error values may grossly
underestimate how large the variance of the item difficulty estimates might actually,
be. Table 4.1 suggests by extrapolation that the Def.f values of such samples would be at
least 1.5, and as such, samples of one and a half times the given size would be required
to generate estimates as stable as a simple random sample of given size.

Comparison of the Three Difficulty Indices

So far only the raw item difficulty variance measures have been considered. Corn',sh

(1983) sought to compare the stability of two types of difficulty index, the Rasch and the
traditional indices. This study incorporates a third, the z-item difficulty index. The
z-item difficulty index is obtained by calculating the traditional difficulty values across
all items on a test and then converting the traditional values by linear transformation in
such a way that the new difficulty values have a fixed mean and a fixed standard
deviation.

Each of the three indices being examined in this study, was measured using a
different metric. The Rasch item difficulty was transformed by multiplication by 4.5512

and subsequent addition of 50 units. The traditional difficulty values were expressed as
percentages. The z-item difficulty comprised traditional values which were transformed
so that the mean difficulty across the test was 50 units and the standard deviation of
difficulty values was 15 units. These procedures meant that at all times there was no
occasion when any of the three indices had a value lower than zero or greater than 190.
Although these procedures made the three indices appear similar, in order to compare
these- three difficulty indices in a meaningful way, it was still necessary, as indicated
earlier, to place them on some form of common metric. For this purpose the following
procedure was adopted-for each of the three item difficulty measures.

The mean difficulty values for each item over 200 samples, for each combination
of sample size, sample design and test length were calculated. The variance of these
mean item difficulty values across the test length is directly related to the metric used
to determine the difficulty values. If each item difficulty value, or if the mean of the
sampling variance of the item difficulty values is divided by this variance across the test
of mean item difficulty values then the resulting ratio is freed from the units of
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measurement. The measure obtained is equivalent to the raw mean item difficulty
sampling variance which would be obtained if the variance, and standard deviation, of
the test items across the test were made equal to unity. This ratio is also a measure of
the error variance associated with item difficulty values expressed as a fraction of the
spread of the item difficulty values across a test. This -'standardized mean item,
difficulty variance' is thus a measure of how clearly defined is the position of the
difficulty of an item from amongst the difficulty values of the other items on the test.
This ratio is a measure of the ability of any form of item difficulty index to indicate
difficulty values which aee clearly differentiated from the other items of a test. In

addition, this ratio, in so far as the variance of the item difficulty values is low, is also a
measure of itefn stability'. It is suggested that the term 'item separability variance ratio'
may be an appropriate label for such a measure. One interesting feature of this variance

ratio was that the denominator was extremely stable in value across samples of different
size and design. This therefore meant that the shape of the plotted standardized mean
item variance ratio values was the same as the shape of the plotted raw item variance
values. The advantage was that the three different difficulty indices could be plotted on
the same axes. These relationships have been presented in Figures 4.4, 4.5 and 4.6. The
labels 'T', 'W and 'Z' were used to indicate the plots for the traditional, Rasch, and
z-item difficulty indices respectively.

From the graphs of the standardized mean item variance ratio a number of
features are evident. The first is the substantial inferiority of the traditional item
difficulty measure as the cluster size increases. Given that most educational surveys use
a clustered sample design, this inferiority of the traditional measure suggests that it is
unsatisfactory as a measure of item difficulty when compared to the other two item
difficulty indices.

One reason for the instability of the traditional measure compared to the other two
difficulty indices is that the traditional index has no fixed mean value. Both the Rasch
and the z-item difficulty values are constrained to a fixed mean (of 50 in this study) for
each occurrence of calibration, that is, for each sample. This is not the case for the
traditional index. Consequently, the mean item sampling variance for the traditional
index has an additional component associated with the average difference of the mean
traditional difficulty values between samples. This component does not arise for the
other two indices. As the sample size increases this difference between samples will
tend to become less, and as a consequence this additional component of the variance will
also be. reduced, meaning that larger samples are less affected by this component. It
should be noted that this explanation is consistent with the trends found for the
traditional index in Figures 4.4 to 4.6, where the greatest instability of the traditional
index compared to the other two indices is exhibited at the smallest sample sizes.
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The second feature of note is the obvious consistency in the order of size of these
standardized mean item variance ratios for any given combination of sample size, sample
design and test length. The traditional difficulty index produces the highest value, and
the z-item difficulty index produces the lowest. Within this study there were no
exceptions to this phenomenon. This feature, however, contradicts the findings of
Tinsley and Dawis (1975) that the z-item difficulty index was less stable than the Rasch
item difficulty index. Associated with this comparison of the Rasch and the z-item
difficulty indices is the additional and obvious feature shown in Figures 4.4 to 4.6,
namely that these two difficulty measures are closely related at all times. The

consistent superiority of the z-item difficulty indexing in terms of stability as measured
by the standardized mean item variance is countered by the very, small size of the
improvement in stability obtained through the use of the z-item difficulty index rather
than the Rasch item difficulty index. This leads to questions regarding the usefulness of

the z-item difficulty index compared to the Rasch difficulty index. Indeed, both indices
owe much of their stability to the fixing of the mean item difficulty at the time Of
calibration. Certainly, at present, the z-item difficulty index is far simpler to calculate,
but it does not have the probability model features of the logistic model. In addition, the
possibility of a common scale for item difficulty and person ability does not arise with
the z-item difficulty index. History may prove that the Rasch item difficulty index is
superior for reasons of practicality and usefulness, even though it is slightly inferior in
terms of item stability as indicated by the standardized mean item variance ratio.

The Underlying Structure of Variability

Up to this point this study has inves igeted these difficulty indices in relation to the
findings of earlier studies such as ose of Whitely and Dawis (1973), Forster (1976),
Wright (1977) and Cornish (1983). It would be useful if the major part of the variability
of such complex measures as t ese difficulty indices could be explained by features of
the calibration samples. T this end the standardized mean item variance ratio was
further modified. One additional transformation was made.

To understand thi , let us first consider the sampling variance of a statistic such as
the mean.

where V( = sampling variance of the mean,

V(X) = variance of X across the population,

7 is the population size,
is the sample size,

and r is the finite population correction,
1
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This equation may be transposed to give:

NV(X) = 1

N

In this study has been measured the sampling variance of the item difficulty, the
term equivalent to V(X). We also know N and n for each sample size and design. For
the term V(X) we have substituted the measured standardized mean item difficulty
variance. The resulting value, in the place of V(X), is difficult to describe algebraically.
However, conceptually it is a measure of the underlying variability of a particular item
difficulty index as measured using a particular sampling design. For this reason it has
beer. labelled the 'structure value'. The degree to which it remains constant across
sample size indicates how well the above equation may be applied to explain the total
variability of the item difficulty index. If the structure factor is constant with relation
to other variables then the above equation is adequate in explaining the variability of the
item difficulty index in terms of sample size, sample design, finite population correction
and the structure value. The use of the standardized mean item difficulty variance,
rather than the raw item difficulty sampling variance, allows comparisons to be made
between the three different indices.

The equation:

N -1F = S.rc. ,a - n

where F is the structure value,
and 3 is the standardized mean item difficulty variance,

is derived directly from the earlier formula for V(X) and is based therefore on the
assumption of simple random sampling. The degree to which increases in the
standardized mean item variance cause an increase in the structure value correspond to
the degree to which non-simple random designs cause an increase in the sampling
variance. As such, the structure value for simple random samples may be considered to
be the base against which the structure values for other sample designs are measured.
The structure values are plotted in Figures 4.7 to 4.9. The values plotted in these Figures
are given in Appendix. D.

These graphs of the structure values indicate some useful features of the sampling
variability of the three item difficulty indices. The horizontal nature of these plots
suggest, at least for the Rasch and z-item difficulty indices, that the major contributing
factors to the variability have been accounted for. It seems that the finite population
correction and the relationship to sample size are the two most important single effects
determining the variability of item difficulty measures. The traditional difficulty value
is again somewhat diffeient. In this case there appears to be an interaction between the
sample size and the cluster size which is particularly apparent in the CLS-5 design. In
all cases, the lowest structure values are, in general, found for the simple random design,
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and as the cluster size increases, so too the structure values increase. The variability
also depends upon the sample design and upon the length of the test, which in this
situation is related to the fit of the items. However, there is no obvious way of
accounting for this in a quantitative manner. Here too, the parallel nature of the
behaviour of the Rasch and z-item difficulty indices is apparent, with even some degree

of association evident in the smallest fluctuations from the horizontal.

Summary

In the first phase of the investigation reported above it was found that the sampling
variance of the item difficulty values was clearly related to sample size in a systematic

and quantifiable manner. This is consistent with the claims of earlier resear'Vers. The

design effect was also a major contributing factor to item difficulty sampling variance
when non-simple random samples were used. The traditional difficulty index appeared to

be inferior to the other two indices in many respects. The standardized mean item

difficulty variance of the z-item difficulty index indicated that it is marginally superior
to the Rasch index. However, other considerations make this advantage small. The
close correspondence in behaviour of the Rasch item difficulty index and the z-item
diffiCulty index also suggested that there was little difference for all practical purposes
between the two.

Investigation 2: The Effect of Sampling on Item Fit and
Point-biserial Discrimination Values

Forster (1976) has suggested that Rasch item fit values increased as the sample size

increased, but that point-biserial values remained the same. To test this contention,
plots were made of the mean Rasch item fit values for the items of a test and for the

mean point-biserial values. .These results are presented in Figures 4.10 and 4.11
respectively.

The Effect of Sample Size on Item Fit Values

Figure 4.10 indicates quite clearly that there exists a distinct relationship between
sample size and the fit values of the items. The fact that all the mean item fit values

plotted were negative was indicative of the good fit of the items as a group to the Rasch

model, perhaps better than might have been expected for a test originally constructed

using traditional procedures. The mean item fit values increased rapidly (in the hegative

direction) as the sample size increased. However, two effects are apparent with respect

to test length. Since the estimation of item fit values requires candidates, the fewer the

number of candidates the more the item fit values tend towards zero. Conversely, the
'population' values for mean item fit, which are recorded in Figure 4.10, are well above

even the mean item fit values for the largest sample size of 320. It would seem that
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whereas item difficulty values can be estimated relatively accurately with small
samples, say around 200, and only slightly less accurately with smaller samples, the
estimation of item fit values becomes markedly weaker as the sample size decreases,
and quickly becomes stronger as the number of subjects increases. This is not

unexpected. The analysis of item fit is dependent upon the response patterns. of
candidates. The ability to detect unusual, or mis-fitting items, requires accurate
information about the expected behaviour of individual items, and such information
cannot be gained with confidence from a small number of subjects. Wright and Stone

(1979:74-77) have stated that the item fit statistic follows a t-distribution with degrees
of freedom equal to one less than the number of candidates. For smaller sample sizes
this test becomes less powerful for detecting extreme, or discrepant, item fit values.
This means that as the sample size decreases the fit values will also decrease in absolute
size. As the sample size is increased towards the population size, so too the item fit
values move closer to the 'population' values.

It should be noted that the 'population' value of the mean item fit is somewhat
different from many other population statistics, such as, for example, the population
mean or the population variance for some parameter. If it were possible to increase the
size of the population, as might be simulated, for example, by counting each person
twice, most population statistics such as the mean and variance, would remain constant.
This is not true for fit however, because, as mentioned above, the fit value is dependent
upon the number of subjects. This means that the notion of a 'p6p-ulation' value for the
mean item fit is less absolute than for most other statistics.

Thus, in general agreement with Forster (1976), it is apparent that as sample size
increases, so too the item fit values increase from small values, in absolute terms,
towards the population item fit values, whether these population values are positive or
negative. It is also of particular interest to note that the sample design had a negligible
effect upon the estimation of item fit values, with any effect which might exist being
most apparent for small sample sizes. It should be noted, however, that the amount of
fluctuation in fit values between similar samples has not been considered as part of this
study.

The Effect of Sample Size on Point-biserial Discrimination Values

For each sample size and design, and each test length, the mean point-biserial item
discrimination value was calculated. These values are plotted in Figure 4.11, where the
empirically determined relationship between sample size and the mean point-biserial
discrimination value is seen. The population value of the mean point-biserial

discrimination index is also shown for each test length.
In contrast to item fit estimation, the sample estimates quickly approach the

population values. It would seem that, unlike item fit estimation, the major factor in
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determining the size of estimated point-biserial discrimination values is not the sample
btit the interaction between sample size and sample design. The simple random

samples estimated the point-biserial discrimination values well, even at the smallest
sample size of 40, whereas this accuracy was not achieved by the cluster sample with 20
students per cluster (CLS-20 design) even at a sample size of 320. The statements of
Forster.: conc ming the consistency of the point-biserial discrimination value over
varying sample sizes is only true for simple random samples, and not true for the cluster
samples examined in this study. A possible explanation of this effect would appear to be
associated with the consistency of class groups in responding to items. The formula'
for the point biserial is given by

rpbi

where 1 is the mean test score of students who were correct on the item,
Xa is the mean test score of students who were incorrect on the item,
sx is the test standard deviation,
2.- is the proportion of students answering the item correctly,

and a is the proportion of students who answered the item incorrectly
(i.e. p + q = 1).

The ri-77? component incorporates the traditional difficulty of the item. Investigation 1
has shown that the traditional difficulty value is the one most susceptible to sample size
and design effects, and the major effect is a noticeably larger sampling variance for the
traditional difficulty index under conditions of a combination of complex sample design
and smaller sample size. These are exactly the same conditions which are associated
with low mean point-biserial discrimination values. It seems likely that the more
extreme values of the traditional item difficulty index which occur under such conditions
cause a reduction in the 57 value, thereby decreasing the associated point-biserial
discrimination values.

Of note also was the general increase in mean disprimination value as the test
length was reduced. This is an artifact of the procedure whereby, in general, the items
which were deleted were non-fitting items, and many did not fit because of poor
discrimination.

Summary

Item fit increases, in absolute value, as the sample size increases. However, there
appears to be a reason why this increase should be expected, namely the increased power

1 Note that X1 and Xo are calculated on the test excluding the item in question,
so that rpbi is an unbiased value.
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of the model to detect inconsistent item behaviour through the increased degrees of
freedom as the sample size become larger. Although Forster (1976) was correct in this
respect, his statements concerning the constancy of point-biserial discrimination values
across different sample sizes are-seen to be true only for simple random samples. For
clustered samples the mean point-biserial discrimination decreased as the sample size
decreased.

Investigation 3: The Effect of Deleting Items which do not Fit the Rasch
Model on Item Fit and Item Variance

Items which did not fit the Rasch model well initially were deleted from the 55 item test
to produce a test of 42 items, which were deemed to satisfy the Rasch calibration
procedures. From these 42 items, further items with poor or extreme item fit values
were removed to produce a test of 32 items. The items deleted and the reasons for doing
so are presented in Appendix F. The effect of these procedures on the item fit values
and the item^variance of the core of 32 items was filen investigated.

The Effect of Item Fit

The examination of item fit is a comparative process. That is, the fit of any one item is
dependent upon the characteristics of the other items around it. This occurs because the
latent trait against which item fit values are calculated can be viewed as corresponding
approximately to the first, or principal component of a factor analysis when applied to
the items of a test. Thus it is the complete group of items, namely the combined item
characteristics which define the latent trait. Each item contributes to this trait in part,
and thus one component of an item fit value involves a comparison between that item
and the other items which comprise the test. The other component of the fit value is
associated with a comparison between the Rasch model and the item, and involves a
quantification of the degree to which the item conforms to the Rasch model. That the
item group in this study does fit the Rasch model well is shown by Figure 4.10, where the
mean item fit is negative, indicating good fit. Because the items which were deleted in
the first reduction of test length were the ones not truly appropriate for Rasch
calibration, that is, because they were items which did not fit the Rasch model well, the
effect was, in general, to take away from the mean fit value those items which had poor,
or, high positive fit values. This meant that those remaining had a better, or more
negative, mean fit value. Similarly, it was again non-fitting items which were deleted
from the 42 item test to produce the 32 item test. Again the same effect applied, and so
the mean item fit value became more negative. This effect is seen in Figure 4.10, where
the mean item fit becomes better (more negative) as the test length is reduced by the
deletion a- poorly fitting items. The consequences of this reduction on the core of 32
items are shown in.Figure 4.12.
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Again it is clear that as the sample size increases the fit values increase in
absolute terms. However, the effect of reducing the test length by deleting poorly
fitting items on the core of 32 items is to worsen their fit values, that is, to make
them more positive. Wright and Stone (1979:80) point out that as misfitting items are
removed from a test the fit values of those items which remain will tend to become
worse, that is, more positive, particularly in the case of those items which do not fit as
well as most others. It would seem 'from the trend in Figure 4.12 that this is consistently
the case. (It should be noted that Figure 4.10(e) and Figure 4.12(c) are identical, but on a
different vertical scale.)

While, in general terms, the deletion of misfitting items improves the mean fit
value of the test, which is to be expected, contrarily it also makes worse the mean fit
value for those items which remain", or for any particular subgroup of well-fitting items
amongst those remaining.

The Effect on Rasch Item Variance

It may be of more value to know the effect of the deletion of poor-fitting items on the
stability of the difficulty index than to know the effect on fit values. When the tests are
taken as a whole, as shown in Figure 4.1, the effect, even though slight,. is apparent. The

effect on the item variance of the reduction of items from 55 to 42 and then to a core of
32 items is seen in Figure 4.1 (with actual values being given in Appendix D, Table D.1).

The initial effect of the reduction of test length of 55 items to 42 by deleting those
possibly unsuitable to Rasch calibration was to decrease the mean item variance.
However, the subsequent deletion of further items on the basis of mis-fit, which, redUCed
the test from 42 items to 32 items, has actually increased the mean item variance back
to the same values, if not higher, than for the 55 item test. The small general increase
in the variance of the 32 core items as the test length is reduced should be noted in
Figure 4.13.

As far as item stability is concerned, it would appear that the mean Rasch item
difficulty variance may be reduced by an initial deletion of inappropriate or poorly
fitting items, but that any further deletion produces an increase in the item variance
which counters the gain in stability obtained through the initial exclusion of poor
items.The size of these effects was however, quite small, and as such was not of great
consequence in this study.

Summary

The features of the items comprising a test, in general, act to influence the Rasch item
fit and Rasch item variance. Exclusion of items which do not fit well causes fit values
to improve for the test as a whole, whilst actually making worse the fit values for the
core of items remaining. Item variance is also affected by the deletion of poor items.
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The variance of the core of remaining items.is not substantially affected. However, as a
whole, the mean item variance for a test is reduced after only a first deletion of
poorly-fitting items. Subsequent deletion of more items causes the gain in stability
obtained from the first deletion of items to be lost.

Investigation 4: Measurement of the Rasch Errors

This investigation covers two aspects of the measurement of the standard error of the
Rasch item difficulty index. The first is its appropriateness, or accuracy, as compared
with the empirical measures available from this study. The second aspect is a brief
discussion of the relationship between the standard error and the size of the calibration
sample.

The Accuracy of the Standard Error

The standard error measure considered here is the one defined by Wright and. Stone
(1979) and produced by the computer program BICAL (Wright and Mead, 1977), namely an

asymptotic estimate of the standard error of the maximum likelihood difficulty estimate.
For each item the variance of the Rasch item difficulty was calculated and

converted to a standard deviation. Also for each item the mean of the standard error
measure across the 200 samples was also obtained. The ratio of this standard error to
the standard deviation was calculated for each item for all the different combinations of
test length, sample size and sample design. Within each such combination the ratio was
summarized by descriptive statistics, tables of which are found-in Appendix E, Tables E.1

to E.12. To reduce these tables to a form in which they could be readily comprehended
the two most extreme values found in Tables E.1 to E.12 are given in Table 4.2. It should

be noted that if persons wish to use the above table (4.2) and the information in Appendix
E to 'correct' values of the Rasch Standard Error, that the values in these tables should
be divided into the values output by programs such as BICAL. ---

The first feature noted in Table 4.2 is that the ratio (as expressed in the 'mean'
column) is indeed cic6e to unity, with systematic deviations from unity according to the
sample type. Thus it appeats that the standard erroz is a good estimator of the variance
of item difficulty values for items in general. In orde-r to determine how much variation
of this ratio was occurring across items, the standard deviation of the ratio values across
the test length was also calculated. From the standard deviation values in Table 4.2 it
was clear that these ratio values had a very narrow distribution, the maximum standard
deviation over all combinations of test length, sample size and sample type being 0.144
and the minimum being 0.058, with typical values for the standard deviation of the ratio
being of the order of 0.1. The narrowness of these distributions indicated that, in
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Table 4.2 Distributional Attributes of the Ratio of Calculated Rasch
Standard Error to Empirically Determined- Sampling Standard
Deviation of Rasch Item Difficulty

No. of
items

Sample
design

Ratio distribution

Mean
ratio

Standard.
deviation

Minimum.
ratio

Maximum
ratio

55 SRS-1 1.02-1.09 0.066-0.098 0.85-0.93 1.18-1.46
CLS-5 0.97-1.11 0.066-0.097 0.69-0.94 1.16-1.37
CLS-10 0.93-1.03 0.086-0.128 0.56-0.71 1.12-1.52
CLS-20 0.86-0.95 0.113-0.144 0.40-0.48 1.08-1.39

42 ---SRS-1 1.01-1.08 0.063-0.074 0.88-0.97 1.13-1.29
CLS-5 0.9 -7 -1.12 0.0b6-0.083 0.68-0.95 1.11-1.33
CLS-10 0.94-1.05 0.084-0.103 0.56-0.70 1.06-1.19
CLS-20 0.85-0.95 0.110-0.125 0.40-0.48 1.00-1.20

32 SRS-1 1.01-1.12 0.058-0.072 0.89-1.01 1.12-1.24
CLS-5 0.97-1.14 0.064-0.084 0.68-1.01 1.11-1.32
CLS-10 0.94-1.05 0.093-0.106 0.56-0.70 1.07-1.19
CLS-20 0.85-0.96 0.122-0.139 0.40-0.48 1.02-1.19

general, the ratio did not 'differ from unity by a substantial amount, thus confirming as
appropriate the use of the standard error parameter to indicate the error associated with
the Rasch item difficulty index.

Further investigation of the trends in Table 4.2 showed that as the sampling
method beeae more clustered, that is, as clusters became larger, the standard error
tended tO underestimate the true error associated with the difficulty estimates. For
simple random samples the standard error slightly overestimated the true error. Again,
the effect of different sample designs upon the variance of the Rasch item difficulty
measure and therefore the standard error are seen. The larger cluster size is associated
with an underestimation of the true error by the standard error estimate. This is

consistent with the earlier findings where larger cluster sizes resulted in an increase of
the variance of the difficulty index, as measured by the design effect (Deff) shown in
Table 4.1, where large clusters are associated with high Deff values, the result of them
having increased the variance of the item difficulty value.

Finally, an examination of the complete tables of distributional attributes of this
ratio of standard error to standard deviation (Tables E.1 to E.12 in Appendix E) shows
that for all sample types except the simple random samples the ratio increased slightly
as the sample size increased. This systematic increase, although slight, is largely

eliminated if the finite population correction is applied to the standard deviation of the
difficulty values (the denominator of the ratio).
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The Inverse Relationship

Earlier researchers, such as Wright (1977) have contended that there is a simple inverse
relationship between the square of the standard error (or the sampling variance) of the
Basch item difficulty index and the size of the calibration sample.

The first investigation in this chapter has indicated clearly the very close
relationship between the variance of the Rasch item difficulty index and the size of the
calibration sample. This relationship is just as Wright had contended, that there was a
simple inverse relationship between the item variance and the sample size. The earlier
part of this fourth investigation has illustrated the appropriateness of the standard error
as a measure of the square root of the sampling variance of the item difficulty. These
two clear and inter-related findings combine to confirm Wright's contention.

Summary

The Rasch standard error parameter was' found to be appropriate as a measure of the
true error of estimation as calculated from the square root of the empirically
determined sampling variance of the item difficulty index. This finding, coupled with
the simple inverse relationship between sample size and item variance, as discussed in
Investigation 1, shows the relationship between the Rasch standard error and the sample
size to be likewise simple; namely, that there is a simple inverse relationship between
the square of the standard error and the size of the calibration sample. Systematic
deviations in the ratio of the standard error to the true error are explained by the
finite population correction and the design effect, both of which are discussed in

Investigation 1.
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CHAPTER 5

ISSUES IN THE CALIBRATION OF TEST ITEMS

Introduction

In this study several issues relating to the calibration of items in educational tests were
investigated. Primarily, the study sought to both compare and describe quantitatively
the variance of the three item difficulty measures as the size and type of calibration
sample was varied. At the same time, it was possible to investigate issues related,to the
Rasch techniques of item calibration by linking these questions to the major
investigations, so that the maximum amount of information could be gained from the one
study, without enlarging its scope of reference beyond manageable limits. In Chapter 4
the results of four investigations are reported in detail. This concluding chapter brings
forward the major findings in nine propositions, which, it is hoped, will provide answers
to some past doubts by clarifying our knowledge, and will give direction for further
investigation where they do not fully complete the picture. No proposition is seen as
more important than the others. Finally, these propositions are projected into ideas
regarding the implications for theory, practice and further research which stem from
this study.

The Propositions

Proposition 1

The Rasch item difficulty is less susceptible to design effects and to variations from
sam le to sam le .articularl at lower sam le sizes, than is the traditional difficult
index.

The standardized mean item difficulty variance for the Rasch index was, without
exception, lower than that for the traditional measure of difficulty (see Figures 4.4, 4.5
and 4.6). This might be largely attributed to the setting of the mean item difficulty
value at the time of calibration. The Rasch item difficulty index is also less inclined to
wide variation at low sample sizes than the traditional item difficulty index. The Rasch
index has considerably lower design effect values than the traditional index when
estimating the item difficulty from non-simple random sample designs. Furthermore,
ttie Rasch index now has the advantage of a body of techniques associated with it which
allow, for example, the linking of two tests with different mean item difficulties onto
one difficulty scale through common items. These advantages over the traditional index
combine with the previously mentioned greater stability to make the use of the Rasch
index a more favgurable proposition than the use of the traditional item difficulty index.
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Proposition 2

The z-item difficulty index is superior to the Rasch item difficulty index with respect to
the stability of estimation.

The z-item difficulty index not only has the mean item difficulty set at a fixed
value, but, in addition, the spread of item difficulties across the test, as measured by the
standard deviation, is also set at a fixed value. Whether this feature is the major reason
for the greater stability of the z-item difficulty index is in need of investigation.
Nevertheless, the z-item difficulty index has been demonstrated empirically in this study
to be very closely related to the Rasch item difficulty index in its behaviour under the
varying conditions imposed by these investigations. The standardized mean item
difficulty variance (see Figures 4.4, 4.5 and 4.6) for the z-item difficulty index was,
without exception, slightly lower than for the Rasch item difficulty index. Thisindicates
that it was slightly more stable under all the conditions examined in this study.
Unfortunately not enousli is known about the practical applicability of the z-item
difficulty index, compared with the now widely used Rasch and traditional item
difficulty indices. The z-item difficulty index does not have the various advantages
offered by the Rasch index. For this reason the slight advantage it has in terms of
stability will not cause it to be used in preference to the Rasch index.

Proposition 3

The major p_art of the variance of the Rasch and- the z-item difficulty indices, and a
lesser part of the variance of the traditional item difficulty index are explained
quantitativel throu h (1) the sam le size and (2) the finite ulation correction; and0

qualitatively by reference to (3) the sample design and (4) the level of item selection.
As shown by the graphs of the parameter given the name 'structure value' (see

Figures 4.7, 4.8 and 4.9), almost all of the variations in item difficulty variance can be
explained by the dependence on sample size and the finite population correction.
Together these two features reduce the standardized mean item difficulty variance to a
near constant value for each combination of sample deOgn, test length and difficulty
index. Paradoxically, the one index for which we may easily calculate a theoretical
variance measure is the traditional one. Whilst the relationships sliown for all three
indices are those which are theoretically correct for the traditional index, yet the
traditional index fits this formulation least well of the three indices in the conditions
examined in this study. Nevertheless, it is apparent that for a known variance we could
easily extrapolate to a new expected variance for a different sample size quite
accurately, by applying this knowledge of the way sample and population size are related
to the variance of item difficulties.
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That is it appears that we may write:

Vi F N-
= .

n
. KT . doff

n-1

where V: is the mean item variance for item difficulty index
F is the structure factor in the simple random case,

is the sample size,

N is the population size,
KT is a constant associated with the particular test,

and is the appropriate design effect value.

Proposition 4

The variance of the Rasch item difficulty index is inversely proportional to the sample
size, as are the variances of the z-item difficulty index and, more approximately, the
variance of the traditional item difficulty index:.

The plots of the structure value (see Figures 4.7, 4.8 and 4.9) show that after
adjusting the standardized mean item difficulty variance by the finite population
correction, the product of this variance and the sample size produces a straight line plot
for the Rasch index, that is, a near constant value. Thus, as was discussed in
Investigation 1, it is clear that the variance of the Rasch item difficulty index is
inversely proportional to the sample size. The z-item difficulty index also produCes a
straight line plot thereby indicating that the same relationship also holds. Although the
same trend is true for the traditional item difficulty index, the graph demonstrates some
additional perturbations not explained by the sample and population size, suggesting that
it is also dependent upon other factors which were not identified. One possibility does
lie in the fact that no fixing of the mean item difficulty occurs for the traditional index.

Proposition 5

The Rasch standard error is a good estimator of the variability of the Rasch item
difficulty index and is inversely proportional to the square root of the sample size.

The relationship between the standard error and the square root of the item
variance is self-evident from the relationship described in Proposition 4, given that the
standard error does estimate well the square root of the item variance. This is shown to
be, the case by the properties of the ratio of the standard error to the square root of the
empirically determined item variance. This ratio is always close to uniity, and deviations
away from unity are small. Whilst the calculated standard error best estimates the true
error for simple random samples, there is a trend for the standard error to slightly
underestimate the true error at large sample sizes for non-simple random sample
designs. One possible explanation involves the finite population correction applied to the
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empirically determined errors, but this explanation does not hold in the case of simple
random samples. Nevertheless, the Rasch standard error is a worthwhile and practical
estimator of the error associated with the measurement of Rasch item difficulty values.

Proposition 6

Rasch item fit values increase from zero towards the population value as the sample size
increases from zero towards the population size, and the estimation of these fit values is
not affected by sample design except to a very small extent at very low sample sizes.

The trends observed in item fit values as the sample size increased were very clear
and confirmed the contentions of Forster (1976) regarding the increase of fit values with
sample size (see Figure 4.10). The observed effect does, however, have an underlying
basis in theory, associated with the reduced ability to detect statistically significant
effects for small samples. In fact, it would be better to say that the detection of good
or poorly fitting items is less powerful for small samples. The overall effect of
increasing sample size is to 'inflate' the individual item fit values. Whatever their value
for one sample size, item fit values will move towards zero for smaller samples sizes and

away from zero for larger samples. Thus the entire distribution of item fit values for a

particular test is expanded or contracted about the zero fit point, reflecting the
differing ability of the sample size to detect significant effects at different sample
sizes. One interesting effect is that unlike many other estimated item parameters (such

as the three difficulty indices and the point-biserial discrimination index which were all

well estimated using small samples) the fit value continues to increase and decrease as
the sample size increases and decreases. This means that even for the largest sample

size used in this study, of 320 candidates, the mean fit value could have been increased
had the sample size been increased. The closeness of the fit values for different sample

designs at any given sample size (see Figure 4.10) indicates that the sample design has
little effect on the estimation of fit, except for very small samples (less than 60). This

hardly need cause concern, because fit is so poorly estimated for such sample, sizes as to

render this small design effect inconsequential in comparison to the inability of the fit

statistic to detect mis-fitting items at such low sample sizes. The fit statistic is not an
asymptotic estimate of a population parameter as are most of the other item statistics

estimated in this study.

Proposition 7

The deletion of items from a test which do not fit the Rasch model well causes an
improvement in overall fit and a reduction in mean item variance, however, although the

additional deletion of poorly fitting items improves overall fit further, the mean item

variance increases again.
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It is apparent that the deletion of poorly fitting items should improve the overall
fit of the test, and this is borne out by the results of this study (see Figure 4.10).
However, the effect of this deletion process on those items which remain is to reduce
their fit values (see Figure 4.12). This, too, is to be expected. The internal consistency
of a subgroup of items is most apparent when badly fitting items are also present.
Removal of poorly fitting items reduces the apparent internal consistency of those items
remaining, as measured by the fit statistic. This effect has been discussed by Wright and
Stone (1979). The other effect of deleting poor items is to reduce initially the item
variane. However, this is not large effect (see Figures 4.4, 4.5 and`4.6), and furiher
deletion of poor items in this study caused an increase in item variance comparable with
the previous decrease. Ultimately, the conclusion to be drawn is that for constructing
Rasch calibrated tests the excessive deletion of items is to be avoided, since quite
satisfactory results were obtained through only one process of item deletion, with this
improvement being small over the initial test..

Proposition 8

Point-biserial discrimination values remain near constant over varying sample size-in the
case of simple random samples, otherwise, in the case of non-simple random samples
they decrease as the sample size decreases below approximately 200 subjects, with
sharper decreases occurring for sample designs with large cluster sizes.

Forster. (1976) had contended that point-biserial discrimination values remained
constant over varying sample sizes. The results of this study indicate this only to be true
for simple random samples. Reference to Figure 4.11 shows this effect quite plainly, and
also indicates that the sample point-biserial discrimination values obtained estimate the
population values well, provided that the sample size is larger than 200.

Proposition 9

The effect of cluster sampling on the estimation of a variety of item parameters is
substantial, particularly at the large cluster sizes often used in educational research and
surveys.

A substantial effect of using non-simple random samples was evident for nearly
every parameter which was estimated in this study. Throughout, one sample design, the
cluster sample design with clusters of size 20, has produced the most deviant outcomes
compared to the other designs. Clearly, the magnitude of the deviation from simple
random sample estimates is consistently related to the size of the clusters used in the
sample design. In terms of deviation from the, results of the simple random sample
design, increasing cluster size causes an increase in the deviation of estimates from
those obtained through the use of simple random samples. This effect was readily
apparent in all investigations except those regarding. Rasch item fit; which would seem
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relatively insensitive to sample design. This study has only touched on the magnitude of
this problem of design effect. First, the sample design must also affect the estimation
of other paraineters not examined here, including those related to item and test
reliability. Secondly, this study has used a maximum, cluster size of 20. This is smaller
than the cluster sizes commonly used in educational surveys, such as intact classes or
even within school year-level cohorts. Thirdly, this effect would be less of a problem
were it not for the fact that large numbers of educational surveys use cluster sample
designs. If cluster sampling were a rarity, rather than commonplace, then the design
effect problem would appear less often. Although not a major part of this study, the
design effect problem has been evident throughout.

e.

Implications for Theory

Clearly the Rasch and the z-item difficulties conform to a structure which is empirically
satisfactory to describe the sampling variability of these two indices. This structure is
that which is known to be theoretically correct for the traditional difficulty index. It
could be useful if it were possible to express mathematically the item difficulty sampling
variances for the Rasch and the z-item difficulty indices, at least in the case of simple
random samples. The empirical evidence suggests that even if these formulae are
complex, then at least they should still approximate quite well the structure examined in
this study. An algebraic description of the sampling distributions of these two indices
would assist in the understanding of their expected properties under a variety of
conditions, provided these conditions may also be expressed mathematically. In

particular, a better mathematical understanding of the properties of the z-item
difficulty index may indicate why this index has very similar stability to the Rasch index,
and whether this may be the case in all circumstances. Given that both indices show
distinct advantages over the traditional index, the z-item difficulty index is worthy of
further theoretical study.

The Rasch fit statistic appears to be very susceptible to sample size effects. This
makes the interpretation of any particular fit value difficult, for the same items on the
same test will exhibit different fit values fbr different sample sizes. What appears to be
an item with poor fit for. one sample may be considered quite satisfactory for another
sample size. This is particularly important given that many test developers use a 'rule of
thumb' cutoff level when examining item fit values with a view to deleting poorly fitting
items from a test. The type of fit statistic which is needed, and which may be developed

as a useful feature of the -Rasch item analysis techniques, is one which exhibits two
components. Consider a statistical procedure such as the detection of differences
between group means. In this procedure numerical parameters must be considered.
The first of these is a measure of the size of the difference detected, and its value may
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be largely independent of the sample size. The second is clearly dependent on sample
size, and is a measure of the statistical significance we may apply to the first measure.
This type of technique is commonly used in a variety of well-established statistical
procedures, such as chi-squared tests, or analysis of variance where two measures are
examined; the first is concerned with the size of the effect, the second with the
statistical significance of the first. If such an approach could be applied to item fit, the
first :measure would involve the degree to which an item appeared to belong, or
otherwise, among the others on the test, and this measure would hopefully be largely
independent of sample size. The second measure would be an indication of the
significance level which could be attributed to the first measure.

One of the practical advantages of such a procedure would be the comparability of
fit statistics obtained from different sample sizes. It would not matter that the
significance levels were different, provided that both were acceptable. Thus the earlier
problem of the same item on the same test having different fit values for different
sample sizes would reduce to a position where the first measure, that concerned with the
degree of fit, was largely unchanged in value. However, the second measure, indicating
the significance level of this degree of fit, might well be-much larger for one sample size
than for another.

Implications for Practice

Item Variance and Sample Size

The knowledge of the structure of variability, whether determined theoretically or
empircally, allows the prediction of item variance under some circumstances. If item
variances are known from an early calibration on a small sample, the expected error
variance to be obtained when a larger sample is.used .may be estimated. Conversely, the
necessary sample size to obtain a maximum allowable item variance may also be
estimated. In practice this feature of prediction of the effects under changed
circumstances allows more systematic planning when attempting to obtain a certain
accuracy, or stability, of item calibration when wise use is made of the knowledge of the
relationships between sample size and item variance.

Effects of Cluster Samples

The effect of cluster sampling on the item variances of the three indices has been
apparent in this study. Research workers and test developers need to be very cautious in
the selection of sample designs and in the way in which they interpret or use the
variance of any statistic based on a non-simple random sample design. The observation
that both the Rasch and the z-item difficulty indices were less susceptible to design
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effects suggests that their use may be preferable to the traditional index when

non simple random sample designs are used.

Deletion of Items

The excessive deletion of items may cause the loss of any gain in precision obtained
through the initial deletion of poorly fitting items. This indicates that sufficient caution
needs to be used in the item selection process lest one becomes over-enthusiastic in the

search for a uni-dimensional subset of items, and in the process produce a test where the

mean item variance is no better than when more items were included. Considerations

such as test reliability and the need to separate candidates along an ability scale suggest

that a longer test may be preferable provided that the stability of the item estimates is

comparable with a shorter one.

Implications, for Future Research

The z-item difficulty index is in need of more study. Whilst theory may help in
understanding some of its features, research into its operational properties may help to
illustrate whether the slight advantage of stability it has exhibited over the Rasch index

is in fact offset by disadvantages-or propertie's as yet unknown.
The process of item selection d( ,erves more attention. This study has used only

three different levefs of item selection criteria, one of which was simply to leave intact

a test which was sound by traditional criteria. Even at this coarse level of item scrutiny,

it was clear that there was an initial advantage gained at the first stage of judicious

item deletion, but there was also a later loss of this advantage through continued

deletion of items. The point at which the maximum advantage is gained needs to be

found. That is, the point where the mean item variance falls to a minimum. Then, if
possible, the relationships between this optimum level of item deletion,and the criteria

which are used for selection should be investigated, even if only empirically. If this is

done, it may then be possible to describe criteria by which the maximum item stability

may be obtained systematically for all tests able to be scaled with the Rasch model.
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APPENDIX A

POPULATION VALUES OF THE SIX ITEM PARAMETERS
FOR THE THREE TEST LENGTHS
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Table A.1 The Population Values of the Six Item Parameters Estimated on the
55 Item Test

Traditional Statistics Rasch Statistics

Item Traditional z-item Point-
number difficulty difficulty biserial

Rasch
difficulty

Standard
error

Item
fit

01 4.06 29.74 0.1667 34.63 0.482 -0.747
f"92 48.80 51.02 0.3001 50.76 0.209 5.800

03 42.06 47.81 0.2759 49.26 0.214 6.112
04 29.80 41.98 0.4536 46.30 0.228 -4.456
05 22.59' 38.55 0.2734 44.28 0.246 2.235
06 33.05 43.53 0.4735 47.12 0.223 -5.156
07 30.23 42.19 0.3625 46.41 0.228 0.416
08 7.09 31.18 0.2387 37.43 0.382 -0.529
09 21.65 38.10 0.3226 44.00 0.246 -0.343
10 25.75 40.05 0.3316 45.20 0.237 0.551
r1 31.85 42.96 0.4378 46.82 0.223 -3.246
12 40.82 47.23 0.4713 48.97 0.214 -4.809
13 10.89 32.99 0.3582 39.77 0.319 -2.236
14 84.59 68.05 0.3398 60.31 0.282 -1.988
15 56.58 54.72 0.3702 52.51 0,214 1.594
16 15.88 35.36 0.4205 41.99 0.278 -3.618
17 27.24 40.77 0.4324 45:62 0.232 -3.478
18 36.21 45.02 0.4811 47.89 0.218° -5.522
19 25.15 39.77 0.4986 45.03 0.237 -6.597
20 46.16 59.66 0.4936 50.17 0.209 -6.061
21 39.40 46.56 0.3418 48.64 0.214 2.515
22 53.63 53.32 0.3565 51.84 0.209 2.479
23 52.65 52.85 0.4350 51.62 0.209 -2.197
74 35.48 44.69 0.3987 47.72 0.218 -0.900
25 17.51 36.13 0.2210 42.60 0.269 1.933
26 55.89 54.40 0.3991 52.35 0.209 -0.265
27 53.12 53.08 0.3670 51.73 0.209 1.540
28 53.59 53.30 0.3576 51.83 0.209 2.210
29 47.57 50.44 0.4166 50.49 0.209 -1.157
30 75.28 63.62 0.2308 57.18 0.241 4.054
31 54.83 53.89 0.3798 52.11 0.209 1.161
32 31.38 42.74 0.4607 46.70 0.223 -4.656
33 26.43 40.38 0.4843 45.39 0.232 -6.039
34 7.43 31.34 0.3057 37.68 0.373 -1.826
35 56.66 54.76 0.3101 52.53 0.214 5.078
36 41.50 47.55 0.4858 49.12 0.214, -5.783
37 39.11 46.41 0.3359 48.57 0.214 2.903
38 41.25 47.43 0.4552 49.06 0.214 -3.837
39 6/.34 59.84 0.4813 55.05 0.223 -6.037
40 56.49 54.68 0.5122 52.49 0.214 -7.304
41 57.26 55.05 0.4542 52.66 0.214 -3.712
42 61.57 57.10 0.3227 53.66 0.214 3.149
43 70.67 41.42 0.3913 55.91 0.228 -2.094
44 60.29 56.49 0.2123 53.36 0.214 9.477
45 57.52 55.17 0.4377 52.72 0.214 -2.776
46 55.64 54.27 0.5526 52.29 0.209 -10.148
47 63.11 57.83 0.3564 54.02 0.218 1.042
48 64.69 58.58 0.2060 54.40 0.218 8.790
49 68.28 60.29 0.3626 55.29 0.223 -0.286
50 84.97 68.23 0.1889 60.47 0.282 1.423
51 73.48 62.77 0.3901 56.67 0.237 -2.016
52 75.75 63.84 0.2298 37.32 0.241 4.049 f
53 64.48 58.48 0.4535 54.35 0.218 -3.867
54 81.04 66.36 9.2353 59.00 0.259 -1,651
55 80.15 65.93 0.3351 58.69 0.255
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Table A.' The Population Values of the Six Item Parameters Estimated on the
42 Item Test

Traditional Statistics Rasch Statistics

Item Traditional z-item
number difficulty difficulty

Point-
biserial

Rasch
difficulty

Standard
error

Item
fit

01

02
03
04 29.80 41.56 0.4554 46.40 0.232 -3.812
05 22.59 37.57 0.2775 44.35 0.250 2.895
06 33.05 43.36 0.4806 47.24 0.223 -4.563
07 30.23 41.80 0.3613 46.52 0.228 1.454
08
D9 21.65 59.66 0.3262 44.04 0.250 0.249

25.75 39.32 0.3314 45.27 0.241 1.537
11 31.85 42.69 0.4362 46.96 0.228 -2.442
12 40.82 47.65 0.4778 49.14 0.218 -3.891
13 10.89 31.10 0.3586 39.72 0.323 -2.088
14

15 56.58 56.37 0.3691 52.79 0.214
16 15%8e 33.86 0.4221 41.98 0.278 -3.444
17 27.24 40.14 0.4350 45.69 0.237 -2.777
18 36.21 45.10 0.4856 48.04 0.223 -4.761
19 25.15 38.99 0.5004 45.11 u.241 -6.280
20 46.16 50.61 0.5015 50.38 0.214 -5.174
21. 39.40 46.87 0.3407 48.81 0.218 3.930
22 53.63 54.74 0.3552 52.12 0.214 4.061
23 52.65 54.20 0.4344 51.88 0.214 -0.512
24 35.48 44.70 0.3916 47.85 0.223 0.733
25 17.51 34.76 0.2258 42.63 0.269 2.324
26 55.89 55.99 0.4037 52.64 0.214 0.967
27 53.12 54.46 0.3620 52.00 0.214 3.112
28 53.59 54.72 0.3509 52.10 0.214 4.112
29 47.57 51.38 0.4186 50.71 0.214 0.320
30
31 54.83 55.40 0.3880 52.39 0%214 2,281
32 31.38 42.43 0.4666 , 46.82 0.228 -4.133
33 26.43 39.69 0.4821 45.46 0.237 -5.237
34
35
36 41.50 48.03 0.4882 49.30 0.218 -4.558
37 39.11 46.71 0.3328 48.73 0.218 4.491
38 41..25 47.89 0.4562 49.24 0.218 -2.490
39 67,34 62.32 0.4787 55.43 0.228 -5.033
40 56.49 56.32 0.5083 52.79 0.214 -5.722
41 57.26 56.75 0.4537 52.96 0.218 -2.258
42
43 70.67 64.16 0.3824 56.32 0.232 -0.771
44
45 57.52 56.89 0.4334 53.02 0.218 -1.097
46 55.64 55.85 0.5447 52.58 0.214 -8.324
47 63.11 59.98 0.3515 54.38 0.223
48
49 68.28 62.84 0.3520 55.68 0.228 1.305
50

51 73.48 65.72 0.3842 57.12 0.241
52
53 64.48 60.74 0.4443 54.70 0.223 -2.097
54 81.04 69.90 0.2251 59.53 0:264 2.864
55 80.15 69.41 0.3226 59.21 0.261 -0.306
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Table A.3 The Population Values for the Six Item Parameters Estimated on
the 32 Item Test

Traditional Statistics Rasch Statistics

Item Traditiodalz-item Point-
number difficulty difficulty biserial

Rasch

difficulty

Standard
error

Item
fit

01

02
03

''''

04 29.80 42.59 0.4542 46.57 0.232 -3.296
05
06 33.05 44.36 0.4776 47.43 0.228 -4.079
07 30.23 1442.82 0.3597 46.73 0.232 1.704
08
09 21.65 38.14 0.3249 44.17 0.255 0.639
10 25.75 40.38 C.3286 45.43 0.241 1.965
11 31.85 43.71 0.4339 47.14 0.232 -1.894
12 40.82 48.59 0.4767 49.39 0.218 -3.528
13 10.89 32.28 0.3562 39.78 0.328 =2.114
14

15

16 15.88 35.00 0.4200 42.05 0.287 -3.244
17 27.24 41.19 0.4338 45.85 0.241 -2.315
18 36.21 46.08 0.4865 48.25 0.223 -4.431
19

20 46.16 51.50 0.4908 50.65 0.218 -4.180
21

22
23 52.65 55.04 0-4277 52.18 0.218 0.292
24 35.48 45.68 0.3751 48.08 0.223 1.879
25 17.51 35.49 0.2282 42.74 0.273 2.644
26 55.89 56.81 0.3926 52.95 0.218 1.983
27
28
29 47.57 52.27 0.4223 50.97 0.218 0.573
30

.

31 54.83 56.23 0.3853 52.70 0.218 2.772
32 31.38 43.45 0.4614 47.03 0.232 '- 3.709
33 26.43 40.75 0.4711 45.62 0.241 -4.354
34
35
36 41.50 48.97 0.4890 49.55 0.218 -4.351
37
38 41.25 48.83 0.4508 49.47 0.218 -1.613
39 67.34 63.04 0.4704 55.79 0.232 -4.582
40 56.49 57.13 0.5081 53.09 0.218 -5.435
41 57.26. 57.55 0.4450 53.28 0.218 -1.397
42
43 70.67 64.86 0.3791 56.71 0.237 -0.568
44
45 57.52 57.69 0.4280 53,33 0.218 -0.524
46
47 63.11 60.74 0.3450 54.75 0.223 2.858
48
49 68.28 63.56 0.3381 36.06 0,232 2.139
50
51 73.48 66.39 0.3771 57.51 0.241 -0.829
52
53 64.48 61.49 0.4346 55.06 0.228 -1.469
54
55 80.15 70.03 0.3179 59.66 0.264 -0.348
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APPENDIX B

A WARNING REGARDING THE USE OF DEFF VALUES
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A Warning Regarding the Use of Deff Valdes

It should be noted that the Deff values given in Table 4.2 are the ratios of two
empirically obtained variances. In general, persons who wish to 'correct' for design
effects have a value of the item variance which has been calculated, for example, the
Rasch Standard Error output by the program BICAL. If this is the case, the values in
Table 4.2 should NOT be used. Instead, reference should be made to Table 4.2 and to
Tables E.1 to E.12 in Appendix E.

The values given in Appendix E are appropriate to 'correct' the Rasch Standard
Error for design (and other) effects. Two points should be made. First, the values in
Tables E.1 to E.12 and in Table 4.2 are associated with deft values and not with deff
values; that is, they should not be applied to variances but to standard errors. Secondly,
they 'correct' the Standard Error by being divided into it, not by being multiplied by
it.
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APPENDIX C

DISCUSSION OF THE DEFF VALUES LESS THAN UNITY
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Discussion of the Deff Values Less Than Unity

There is a number of instances where Deff values less than unity are encountered.
Although not always expected, such values are not exceptional, and are a function of the
sample design and the sampling frame. In the case of the CLS-5 design, an increase in
thz sample size quickly increases the number of clusters required, because the cluster
size is small., The largest sample size of 320 requires 64 clusters. The sampling frame
contains only 67 'pseudoclasses' or possible clusters. Thus, each CLS-5 sample taken has
a minimum overlap with each other CLS-5 sample of .61 pseudoclasses out of a total of
67 pseudoclasses. This overlap means that a fairly 'representative' cross-section of the
total population is taken for large sample sizes under the CLS-5 design. That this
cross-section is more representative than the SRS-1 design, in terms of the stability of
the parameters estimated from the sample, is shown in the Deff values less than unity.
Such effects are most likely to occur under just the conditions described above, namely,
an almost complete coverage of the primary sampling units (classes or clusters), coupled
with some degree of conformity within classes compared to the whole population.
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TABLES OF THE VALUES WHICH ARE PLOTTE
IN FIGURES 4.1 to 4.13



Table D.1 (Raw) Mean Item Variance of the Rasch Item Difficulty Index
(Plotted as Figure 4.1) (All values rounded)"

Test Sample SSample size

length design 40 60 80 100 120 160 200 240 320

55 SRS-1 3.45 2.31 1.73 1.38 1.14 0.82 0.63 0.53 0.37
items CLS-5 3.81 2.56 1.83 1.50 1.18 0.83 0.65 0.52 0.36

CLS-10 4.20 2.91 2.09 1.64 1.34 0.93 0.74 0.58 0.42
CLS-20 5.46 3.51 2.59 1.99 1.71 1.21 0.93 0.72 0.51

42 SRS-1 3.29 2.08 1.55 1.20 0.97 0.72 0.57 0.46 0.34
items CLS-5 3.63 2.36 1.64 1.30 1.03 0.75 0.58 0.46 0.32

CLS-10 4.03 2.67 1.89 1.48 1.20 0.84 0.66 0.53 0.37
CLS-20 5.44 3.47 2.44 1.85 1.56 1.08 0.84 0.66 0.48

32 SRS-1 3.47 2.14 1.60 1.23 1.01 0.74 0.58 0.47 0.33
items CLS-5 3.85 2.45 1.72 1.35 1.07 0.77 0.59 0.47 0.32

CLS-10 4.30 2.78 1.97 1.58 1.26 0.85 0.69 0.56 0.39
CLS-20 5.75 3.63 2.58 1.93 1.67 1.13 0.87 0.69 0.50

Table D.2 (Raw) Mean Item Variance of the Traditional Item Difficulty Index
(Plotted as Figure 4.2) (All values rounded)

Test Sample
length design

Sample sizeS

40 60 80 100 120 160 200 240 320

55 SRS-1 49.66 32.96 25.10 19.71 16.47 11.97, 9.24 7.71 5.71
items CLS-5 66.77 47.47 32.27 26.27 19.84 14.42 10.67 8.03 4.97

CLS-10 100.5 66.86 47.75 35.12 31.15 23.33 17.44 13.16 8.71
CLS-20 172.5 104.9 80.55 56.70 52.43 36.83 30.24 23.72 18:36

42 SRS-1 51.99 34.21 26.37 20.55 17.06 12.55 10.34 7.98 6.02
items CLS-5 71.61 51.72 34.82 28.40 21.20 15.66 11.28 8.55 5.16

CLS-10 111.4 74.20 52.53 38.72 34.49 26.15 19.25 14.61 9.52
CLS-20 196.3 118.9 92.15 64.02 59.65 41.81 34.53 26.90 20.97

32 SRS-1 51.40 33.27 26.04 20.55 16.91 12.53 9.58 7.98 5.90
items CLS-5 72.2f, 52.23 35.17 28.98 21.02 15.69 11.35 8.43 4.99

CLS-10 115.6 76.43 54.19 39.65 35.34 26.77 19.86 15.00 9.71
CLS-20 203.2 123.1 95.40 65.70 62.13 43.35 35.50 27.77 21.67
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Table D.3 (Raw) Mean Item Variance of the z-item Difficulty Index
.....(Ptotted. as Figure 4.3) (All values rounded)

Test Sample
Sample size

length design 40 60 80 1,00 ,120 160 200 240 320

55 SRS-1 8.56 5.72 4.31 3.54 2.89 2.17 1.65 1.36 1.01

items CLS-5 9.22 6.43 4.67 3.77 3.01 2.25 1.73 1.41 0.97

CLS-10 10.29 7.27 5.30 4.22 3.54 2.59 2.06 1.64 1.16

CLS-20 13.28 8.90. 6.62 5.26 4.50 3.75 2.62 2.11 1.54

42 SRS-1 11.22 7.54 5.69 4.66 3.83 2.92 2.31 1.87 1.42

items CLS-5 12.02 8.45 6.10 4.96 3.98 3.02 2.31 1.90 1.31

CLS -10 13.12 9.33 6.89 5.52 4.62 3.40 2.69 2.15 1.55

CLS-20 16.77 11.58 8:51 6.81 5.81 4.21 3.40 2.72 2.00

32 SRS-1 10.42 6.90 3.13 4.27 3.48 2.66 2.04 1.66 1.21

items CL5-5 11.34 7.75 5.66 4.58 3.61 2.77 2.10 1.72 1.17

CLS-10 12.42 9.72 6.33 5.23 4.34 3.09 2.51 2.01 1.42

CLS-20 15.92 10.95 8.01 6.45 5.48 3.96 3.14 2.52 1.84

Table D.4 (Raw) Mean Item Difficulty Variance of the Three Difficulty
Indices on the 55 Item Test (Plotted as Figure 4.4) (All values
rounded)

Sample Difficulty
design index

Sample size

40 60 80 100 120 160 200 240 , 320

SRS-1 R .1004 .0672 .0511 .0409 .0340 .0247 .0190 .0160 .0113

T .1126 .0743 .0569 .0444 .0371 .0272 .0208 .0175 .0130

Z .0938 .0608 .0451 .0367 .0298 .0222 .0168 .0138 .0102

CLS-5 R .1105 .0744 .0535 .0440 .0352 .0252 .0197 .0158 .0111

T .1497 .1067 .0722 .0593 .0447 .0389 .0241 .0182 .0112

Z .1017 .0688 .0490 .0320 .03" .0230 .0176 .0143 .0098

CLS-10 R .1213 .0842 .0606 .0485 .0398 .0279 .0226 .0177 .0127

T .2277 .1511 .1071 .0789 .0702 .0530 .0397 .0297 .0198

Z .1149 .0785 .0560 .0441 .0367 .0265 .0210 .0167 .0118

CLS-20 R .1583 .1014 .0739 .0584 .0503 .0360 .0279 .0220 .0156

T .3889 .2361 .1790 .1288 .1188 .0839 .0686 .0537 .0416

Z .1534 .0978 .0710 .0556 .0472 .0336 .0269 .0215 .0157
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Table D.5 Standardized Mean Item Difficulty Variance of the Three
Difficulty Indices on the 42-Item Test (Plotted as Figure 4.5)
(All values rounded)

Sample Difficulty
design index

Sample size

40 60 80 100 120 160 200 240 320

SRS-1 'R .1424 .0911 .0688 .0540 .0446 .0332 .0261 .0212 .0157
T .1597 .1039 .0804 .0624 .0522 .0386 .0314 .0244 .0184
Z .1267 .0816 .0604 .0490 .0399 .0301 .0236 .0191 .0144

CLS-5 R .1554 .1031 .0727 .0581 .0465 .0345 .0264 .0216 .0148
T .2173 .1568 .1050 .0863 .0645 .0484 .0344 .0264 .0158
Z .1370 .0925 .0650 .0522 .0415 .0311 .0236 .0194 .0133

CLS-10 R .1707 .1160 .0841 .066$ .0539 .0382 .0303 .0244 .0173
T .3422 ,.2266 .1596 .1176 .1049 .0802 .0591 .0446 .0292
Z .1514 .1031' .0741 .0585 .0485 .0353 .0276 .0220 .0157

CLS-20 R .2291 .1497 .1052 .0822 .0699 .0493 .0388 .0305 .0219
T .5989 .3621 .2756 .1969 .1827 .1291 .1063 .0824 .0642
Z .2023 .1312 .0931 .0732 .0617 .0440 .0352 .0279 .0204

Table D.6 Standardized Mean Item Difficulty Variance of the Three
Difficulty Indices on the 32-Item Test (Plotted as Figure 4.6)
(All values rounded)

Sample Difficulty
design index

Sample size

40 60 . 80 100 120 160 200 240 320

.1361 .0858 .0645 .0506 .0421 .031'0 .0242 .0197 .0140
T .1504 .0965 .0754 .0594 .0492 .0367 .0278 .0234 .017.2

Z .1167 .0743 .0542 .0446 .0361 .0273 .0208 .0169 .0123

CLS-5 R .1496 :0970 .0692 .0552 .0438 .0324 .0247 .0200 .0136
T .2084 .1505 .1006 .0842 .0607 .0462 .0329 .0247 .0145
Z .1284 .0842 .0600 .0481 .0375 .0285 :0215 .0175 .0119

CLS-10 R .1649 1090 .0798 .0645 .0516 .0354 .0287 .0234 .0164
T .3382 2209 .1568 .1141 .1024 .0782 .0581 .0435 .0284
Z .1423 0958 .0677 .0553 .0455 .0320 .0258 .0205 .0144

CLS-20 R .2216 .1430 .1010 .0779 .0678 .0473 .0365 .0288 .0208
T .5887 .3585 .2717 .1920 .1810 .1275 .1036 .0808 .0630
Z .1904 .1233 .0873 .0690 .0581 .0413 .0325 .0258 .0188
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Table D.7 Structure Values for the Three Difficulty Indices on the
55-Item Test (Plotted as Figure 4.7) (All values rounded)

Sample Difficulty
design index

Sample size

40 60 80 100 120 160 200 240 320

SRS-1 R 4.086 4.137 4.233 4.274 4.30k 4.237 4.147 4.288 4.203
T 4.579 4.574 4.709 4.633 4.68E 4.663 4.545 4.677 4.802

3.814 3.739 3.735 3.836 3.769 3.814 3.670 3.670 3.766

CLS-5 R 4.496 4.582 4.428 4.599 4.448 4.328 4.305 4.230 4.103
T 6.091 6.568 5.981 6.1&8 5.653 5.645 5.261 4.870 4.163
Z 4.139 4.236 4.058 4.094 3.926 3.956 3.844 3.817 3.618

CLS-10 R 4.933 5.183 5.016 5.064 5.035 4.795 4.932 4.730 4.713
T 9.264 9.299 8.870 8.237 8.871 9.094 8.671 7.948 7.318
Z 4.675 4.832 4.638 4.605 4.636 4.557 4.591 4.451 4.359

CLS -20 R 6.438 6.238 6.116 6.099 -6.-366 6.183 6.100 5.879 5.787
T. 15.82 14.53 14.82 13.45 15.02 14.40 15.00 14.36 15.40
Z 6,240 6.018 5.876 5.802 5.964 5.766 5.886 5.752 5.814

Table D.8 Structure Values for the Three Difficulty Indices on the
42-Item Test (Plotted as Figure 4.8) (All values rounded)

Sample Difficulty
design index

Sample size

40 60 80 100 120 , 160 200 ' 240 320

SRS-1 R 5.791 5.609 5.696 5.639 5.63 ;5.703 5.708 5.659 5.835

T 6.498 6.397 6.658 6.517 6.598 6.619 6.863 6.510 6.826

5.152 5.025 5.000 5.113 5.041 5.171 5.166 5,107 5.32

CLS-5 R 6.324 6.346 6.015 6.067 5.879 5.917 5.781 5.761 5.495

8.840 9.650 8.692 9.012 8.150 8.307 7.509 7.044 5.857

Z 5.571 5.691 5.383 5.449 5.25G 5.342 5.161 5.187 4.923

CLS-10 R 6.943 7.137 6.964 6.971 6.820 6.552 6.621 6.523 6.391

T 13.92 13.95 13.22 12.28 13.26 13.77 12.92 11.93 10.83

6.160 6.344 6.134 6.110 6.135 6.053 6.044 5.888 5.821

CLS-20 R 9.320 9.212 8.714 8.588 8.840 8.458 8.483 8.163 8.130

T 24.36 22.29 22.82. 20.56 23.10 22.17 23.23 22.03 23.80

Z 8.227 8.079 7.710 7.643 7.804 7.557 7.697 7.470 7.571
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'Fable D.9 Structure Values for the Three Difficulty Indices on the
32-Item Test (Plotted as Figure 4.9) (All values rounded)

Sample Difficulty
Sample size

design index 40 60 80 100 120 160 200 240 320

SRS-1- R 5.538 5.279 5.343 5.284 5.317 5.327 5.284 5.261 5.199
T 6.117 5.941 6.239 6.200 6.223 6.294 6.078 6.247 6.360
Z 4.747 4.57.1 4.484 4.661 4.568 4.691 4.552 4.527 4.551

CLS-5 R 6.086 5.970 5.726 5.762 5.543 5.562 5.391 5.335 5.036
T 8.477 9.266 8.331 8.788 7.668 7.929 7.183 6.612 5.380
Z 5.222 5.180 4.972 5.022 4.740 4.886 4.692 4.689 4.403

CLS-10 R 6.708 6.712 6.608 6.731 6.528 6.073 6.277 6.248 6.089
T 13.76 13.60 12.98 11.92 12.95 13.43 12.70 11.63 10.52
Z 5.790 5.897 5.603 5.770 5.747 5.487 5.633 5.488 5.344

CLS-20 R 9.013 8.802 8.359 8.136 8.575 8.116 7.974 7.694 7.715
T 23.95 22.07 22.49 20.04 22.89 21.88 22.65 21.59 23.34
Z 7.743 7.592 7.231 7.207 7.340 7.087 7.095 6.904 6.966

Table D.10 Mean Rasch Item Fit Values for the Three Test Lengths
(Plotted as Figure 4.10) (All values rounded)

Test Sample
length design 40 60 80 100 120 160 200 240 320

Sample size

55 SRS-1 -0 073 -0.104 -0.127 -0.147 -0.161 0.199_ -0.224 -0.246 -0.287
items CLS-5 -0.073 -0.105 -0.121 -0.148 -0.167 -0.194 -0.220 -0.247 -0.286

CLS-10 -0.067 -0.101 -0.117 -0.146 -0.169 -0.199 -0.222 -0.249 -0.288
CLS-20 -0.049 -0.099 -0.115 -0.146 -0.163 -0.194 -0.226 -0.247 -0.292

42 SRS-1 -0.106 -0.138 -0.165 -0.186 -0.208 -0.245 -0.274 -0.304 -0.351
items CLS-5 -0.103 -0.138 -0.162 -0.187 -0.210 -0.240 -0.269 -0.300 -0.346

CLS-10 -0.101 -0.137 -0.157 -0.188 -0.211 -0.247 -0.274 -0.303 -0.350
CLS-20 -0.082 -0.133 -0.157 -0.191 -0.208 -0.244 -0.278 -0.302 -0.354

32 SRS-1 -0.138 -0.177 -0.210 -0.237 -0.260 -0.306 -0.348 -0.380 -0.439
CLS-5 -0.134 -0.176 -0.209 -0.238 -0.267 -0.302.-0.339 -0.377 -0.434,
CLS-10 -0.134 -0.176 -0.202 -0.238 -0.266 -0.308 -0.346 -0.379 0.439 7
CLS-20 -0.110 -0.172 -0.201 -0.241 -0.265 -0.309 -0.350 -0.381 -0.445
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Table D.11 Mean Point-biserial Discrimination Values for the Three Test
Lengths (Plotted as Figure 4.11) (All values rounded)

Test Sample
length design

Sample size

40 60 80 100 120 160 200 240- 320

55 SRS-1 0.3652.0.3635 0.3659 0.3667 0.3650 0.3695 0.3689 0.3696 0.3690
items CLS-5 0.3484 0.3579 0.3590 0.3642 0,3646 0.3677 0.3658 0.3676 0.3665

CLS-10 0.3372 0.3497 0.3478 0.3554 0.3590 0.3644 0.3652 0.3672 0.3674
CLS-20 0.2846 0.3235 0.3309 0.3517 0.3496 0.3567 0.3579 0.3600 0.3642

42 SRS-1 0.3995 0.3993 0.4002 0.4002 0.4005 0.4042 0.4031 0.4041 0.4037
items CLS-5 0.3838 0.3926 0.3933 0.3993 0.3994 0.4026 0 4005 0.4025 0.4014

CLS-10 0.3705 0.3830 0.3813 0.3884 0.3934 0.3984 0.3999 0.4015 0.4015
CLS-20 -0.3155 0.3561 0.3632 0.3852 0.3835 0.3909 0.3921 0.3936 0.3986

32 SRS-1 0.4079 0.4068 0.4072 0.4072 0,4085 0.4107 0.4117 0.4119 0.4105
items CLS-5 0.3908 0.4002 0.4007 0.4060 0.4065 0.4099 0.4082 0.4106 0.4095

CLS-10 0.3768 0.3897 0.3889 0.3954 0.4010 0.4055 0.4066 0.4093 0.4085
CLS-20 0.3182 0.3633 0.3701 0.3917 0.3907 0.3970 0.3991 0.4008 0.4061

Table D.12 Mean Rasch Item Fit Values of the Core of 32 Items for the
Three Test Lengths (Plotted as Figure 4.12) (All values rounded)

Test Sample
length design

Sample size

40. 60 80 100 120 160 200 240 320

55 SRS-1 -0.332 -0.422 -0.481 -0.535 -0.596 -0.693 -0.797 -0.876 -0.998

items CLS-5 -0.325 -0.411 -0.480 -0.546 -0.608 -0.706 -0.787 -0.878 -1.014
CLS-10 -0.303 -0.395 -0.457 -0.528 -0.602 -0.693 -0.781 -0.869 -0.995

CLS-20 -0.238 -0.376 -0.440 -0.525 -0.585 -0.678 -0.773 -0.843 -0.999

42 SRS-1 -0.203 -0.251 -0.294 -0.333 -0.376 -0.422 -0.491 -0,549 -0.631

items CL5-5 -0.195 -0.254 -0.300 -0.332 -0.374 -0.431 -0.485 -0.545 -0.630
CLS-10 -0.188 -0.249 -0.288 -0.335 -0.375 -0.433 -0.478 -0.541 -0.616
CLS-20 10.145 -0.242 -0.282 -0.333 -0.371 -0.418 -0.484 -0.533 -0.627

32 SRS-1 -0.138 -0.177 -0.210 -0.237 -0.260 -0.306 -0.348 -0.380 -0.439

items CL5-5 -0.134 -0.176 -0.209 -0.238 -0.267 -0.302 -0.339 -0.377 -0.436
CLS-10 -0.134 -0.176 -0.202 -0.238 -0.266 -0:308 -0.346 -0.379 -0.439

CLS-20 -0.110 -0.172 -8.201 -0.241 -0.265 -0.309 -0.350 -0.381 -0.445
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Table D.I3 Mean Rasch Item Difficulty Variance of the Core of 32 Items
for the Three Test Lengths (Plotted as Figure 4.13) (All values
rounded)

Sample size
Test Sample
length design 40 60 80 100 120 160 200 240 320

55 SRS-1 3.19 1.95 1.46 1.14 0.94 0.68 0.53 0.43 0.31
items CLS-5 3.56 2.27 1.59 1.25 0.97 0.71 0.55 0.44 0.30

CLS-10 4.06 2.64 1.86 1.48 1.16 0.80 0.64 0.52 0.36
CLS-20 5.68 3.49 2.49 1.83 1.57 1.07 0.82 0.65 0.47

SRS-1 3.32 2.05 1.54 1.19 0.97 0.72 ) 0.57 0.47 0.34
items CLS-5 3.72 2.36 1.65 1.30 1.02 0:74 0.57 0.46 0.31

CLS -10 4.15 2.69 1.91 1.53 1.21 0.83 .0.67 0.54 0.37
CLS-(20 5.65 .3.54 2.53 1.89 1.61 1.11 0.85 0.67 0.48

32 SRS-1 3.47 2.14 1.60 1.23 1.01 0.74 0.58 0.47 0.33
items CLS-5 3.85 2.45 1.72 1.35 1.07 0-.77 0.59 0.47 0.32

CLS-10 4.30 2.78 1.97 1.58 1.26 0.85 0.69 0.56 0.39
CLS-20 5.75 3.63 2.58 1.93 1.67 1.13 0.87 0.69 0.50
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APPENDIX E

COMPLETE TABLES OF THE RATIO OF CALCULATED RASCH STANDARD
ERROR TO EMPIRICALLY DETERMINED SAMPLING STANDARD

DEVIATION OF THE RASCH ITEM DIFFICULTY
(Summarizedas Table 4.2)



Table E.1 Ratio of the Calculated Rasch Standard Error to Empirically
Determined Sampling Standard Deviation .of Rasch_Item Difficulty
fdr.55 Item Test and Sample Design SRS-1 (All values rounded)

. Sample Mean Standard Minimum Maximum
size ratio deviatio.s ratio ratio

40 1.017 0.098 0.862 1.456

60 1.025 0.074 0.861 1.245

80 1.031 0.066 0.891 1.175
;s.

100 1.025 0.073 0.851 1.175

120 1.036 0.072 0.873 1.269

160 1.046 0.067 0.899 1.222

200 1.066 0.068 0.929 1.206

240 1.077 0.069 0.923 1.243

320 1.094 0.069 0.931 1.205

Table E.2 Ratio of the Calculated Rasch Standard Error to Empirically
Determined Sampling Standard Deviation of Rasch Item Difficulty
for 55 Item Test and Sample Design CLS-5 (All values rounded)

Sample Mean Standard Minimum Maximum
size ratio deviation ratio ratio

40 0.977 0.097 0.690 1.370

60 0.973 0.077 0.747 1.236

80 0.997 0.082 0.746 1.275

100 0.998 0.076 0.725 1.155

120 1.017 0.072 0.842 1.179

160 1.037 0.066 0.844 1.191

200 1.049 0.070 0.884 1.272

240 1.C67 0.071 0.904 1.217

320 1.114 0.084 0.939 1.314
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Table E.3 Ratio of the Calculated Rasch Standard Error to Empirically
Determined Sampling Standard Deviation of Rasch Item Difficulty
for 55 Item Test and Sample Design CLS-10 (All values rounded)

`Sample
size

Mean
ratio

Standard
deviation

Minimum
ratio

Maximum
ratio

40 0.949 0.128 0.561 1.523

60 0.928 0.093 0.567 1.212

80 0.951 0.099 0.563 1.201

100 0.954 0.093 0.614 1.122
e

120 0.960 0.089 0.646 1.183

160 0.992 0.092 0.606 1.175

200 0.991 0.099 0.640 1.222

240 1.008 0.086 0.707 1.197

320 1.034 0.084 0.709 1.179
_._

Table E.4 Ratio of the Calculated Rasch Standard Error to Empirically
Determined Sampling Standard Deviation of Rasch-Item Difficulty
for 55 Item Test and Sample Design CLS-20 (All values rounded)

Sample Mean Standard Minimum Maximum

size ratio deviation ratio ratio

40 0.858 0.144 0.440 1.389

60 0.866 0.122 0.403 1.240

80 0.871 0.114 0.432 1.173

100 0.890 0.125 0.421 1.089

120 0.877 0.113 0.402 1.081

160 0.904 0.114 0.431 ' 1.102

200 0.904 0.116 0.481 1.117

240 0.926 0.115 0.464 1.106

320 0.946 0.120 0.467 1.205
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Table E.5 Ratio of the Calculated Rasch Standard Error to 'Empirically

Determined Sampling,Standard Deviation of Rasch Item Difficulty
for 42 Item Test and Sample Design SRS-1 (All values rounded)

Sample Mean Standard Minimum Maximum
size ratio deviation 1-atio ratio

40 1.010 0.065 0.878 1.133

60 1.029 0.065 0.912 1.144

80 1.036 0.067 0.886 1.158

100 1.038 0.066 0.902 1.171

120 1.052 0.071 0.940 1.233

160 1.050 0.062 0.972 1.222

200 1.060 0.073 0.90-2 1.203

240 1.073 0.063 0.954 1.283

320 1.080 0.074 0.929 1.288

Table E.6 Ratio of the Calculated Rasch Standard Error to Empirically.,
Determined Sampling Standard Deviation of Rasch Item Difficulty
for 42 Item Test and Sample Design CLS-5 (All v:ilues rounded)

Sample Mean Standard Minimum Maximum
size ratio deviation ratio ratio

40 0.971 0.073 0.681 1.115

60 0.972 0.070 0.742 1.111

80 1.005 0.074 0.733 1.126

100 1.010 0.080 0.711 1.153

120 1.027 0.067 0.833 1.161

160 1.038 0.066 0.836 1.192

200 1.056 0.071 0.865 1.252

240 1.073 0.072 0.900 1.223

320 1.122 0.083 0.954 1.330
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Table E.7 Ratio of the Calculated Rasch Standard Error to Empirically
Determined Sampling Standard Deviation of Rasch Item Difficulty
for 42 Item Test and Sample Design CLS-10 (All values rounded)

Sample Mean Standard Minimum Maximum

size ratio deviation ratio ratio

40 0.945 0.097 0.563 1.116

60 0.936 0.088 0.560 1.058

80 0.959 0.103 0.561 1.146

100 0.961 0.097 0.607 1.100

120 0.965 0.089 0.641 1.189

160 0.998 o.oe8 0.603 1.176

200 1.002 0.099. 0.637 1.185

240 1.012 0.084 0.702 1.179

320 /1.046 0.088 0.699 1.181

Table E.8 Ratio of the Calculated Rasch Standard Error to Empirically
Determined Samplin& Standard Deviation of Rasch Item Difficulty
for 42 Item Test and Sample Design CLS-20 (All values rounded)

Sample Mean Standard Minimum Maximum

size ratio deviation ratio ratio

40

60

80

100

120

160

200

240

320

0,845

0.854

0.831

0.893

0.882

0.913

0.911

0.933

0.953

0.114

0.110

0.115

0 .0.125

0.114

0.121

0.119

0.118

0.125

0

0.441

0.398

0.427

00.421

0.398

0.428

0.477

0 461

0.464

'

1.070

0.999

1.104

1.098

1.087

1.094

1.123

1.126

1.202
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Table E.9 Ratio of the Calculated Rasch Standard Error to Empirically.
Determined Sampling Standard Deviation of Rasch Item Difficulty
for 32 Item Test and Sample Design SRS-1 (All values rounded)

Sample Mean Standard Minimum Maximum
size ratio deviation ratio ratio

40 1.008 0.065 0.885 1.117

60 1.034 0.060 0.917 1.146

80 , 1.045 0.072 0.898 1.172

100 1.045 0.064 0.903 1.188

120 1.056 0.059 0.935 1.150

160 1.060 0.066 0.973 1.240

200 1.076 0.065 0.926 1.188

240 1.095 0.068 0.928 1.237

320 1.118 0.058 1.005 1.202

Table E.10 Ratio of the Calculated Rasch Standard Error to Empirically
Determined Sampling Standard Deviation of Rasch Item Difficulty
for 32 Item Test and Sample Design CLS-5 (All values rounded)

Sample Mean Standard Minimum Maximum
size ratio deviation ratio ratio

40 0.967 0.081 0.681 1.118

60, 0.979 0.071 0.750 1.112

80 1.004 0.078 0.731 1.133

100 1.015 0.084 0.708 1.153

120 1.035 0.071 0.829 1.157

160 1.046 0.072 0.834 1.206

200 1.U63 0.071 0.864 1.222

240 1.084 0.064 0.935 1.225

320 1.137 0.070 1.006 1.316

80



Table E.11 Ratio of the Calculated Rasch Standard Error to Empirically
Determined Sampling Standard Deviation of Rasch Item Difficulty
for 32 Item Test and Sample Design CLS-10 (All values rounded)

Sample Mean Standard Minimum Maximum

size ratio deviation ratio ratio

40 0.943 0.106 0.565 1.107

60 0.939 0.093 0.563 1.067

80 0.964 0.105 0.565 1.149

100 0.955 0.103 0.612 1.099

120 0.966 0.098 0.643 1.181

160 1.015 0.100 0.606 1.164

200 1.006 0.105 0.642 1.137

240 1.010 0.093 0.700 1.179

320 1.051 0.095 0.699 1.187

Table E.12 Ratio of the Calculated Rasch Standard Error to Empirically
Determined:Sampling Standard Deviation of Rasch Item Difficulty

for 32 Item Test and Sample Design CLS-20 (All values rounded)

Sample Mean Standard Minimum Maximum

site ratio deviation ratio ratio

40 0.848 0.126 0.440 1.041

60 0.863 0.122 0.399 1.016

80 0.876 0.130 0.432 1.110

100 0,897 0.133 0.426 1.113

120 0.886 0.126 0.401 1.061

160 0.919 0.134 0.430 1.081

200 0.922 0.129 0.480 1.143

240 0.947 0.133 0.463 1.135

320 0.964 0.139 0.466 1.188
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APPENDIX F

BASCH ITEM ANALYSES AND OUTLINE OF THE ITEMS DELETED
(on microfiche)
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